These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 20204291)
1. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Han X; Yoon SH; Ding Y; Choi TG; Choi WJ; Kim YH; Kim YJ; Huh YB; Ha J; Kim SS Oncol Rep; 2010 Apr; 23(4):1053-62. PubMed ID: 20204291 [TBL] [Abstract][Full Text] [Related]
2. Novel combinational treatment of cisplatin with cyclophilin A inhibitors in human heptocellular carcinomas. Lee J Arch Pharm Res; 2010 Sep; 33(9):1401-9. PubMed ID: 20945139 [TBL] [Abstract][Full Text] [Related]
3. Cyclophilin A as a target of Cisplatin chemosensitizers. Hamilton G Curr Cancer Drug Targets; 2014; 14(1):46-58. PubMed ID: 24200080 [TBL] [Abstract][Full Text] [Related]
4. Transgenic mice overexpressing cyclophilin A are resistant to cyclosporin A-induced nephrotoxicity via peptidyl-prolyl cis-trans isomerase activity. Hong F; Lee J; Piao YJ; Jae YK; Kim YJ; Oh C; Seo JS; Yun YS; Yang CW; Ha J; Kim SS Biochem Biophys Res Commun; 2004 Apr; 316(4):1073-80. PubMed ID: 15044094 [TBL] [Abstract][Full Text] [Related]
5. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. Hong F; Lee J; Song JW; Lee SJ; Ahn H; Cho JJ; Ha J; Kim SS FASEB J; 2002 Oct; 16(12):1633-5. PubMed ID: 12207006 [TBL] [Abstract][Full Text] [Related]
6. Sanglifehrin A, a novel cyclophilin-binding compound showing immunosuppressive activity with a new mechanism of action. Zenke G; Strittmatter U; Fuchs S; Quesniaux VF; Brinkmann V; Schuler W; Zurini M; Enz A; Billich A; Sanglier JJ; Fehr T J Immunol; 2001 Jun; 166(12):7165-71. PubMed ID: 11390463 [TBL] [Abstract][Full Text] [Related]
7. Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Choi KJ; Piao YJ; Lim MJ; Kim JH; Ha J; Choe W; Kim SS Cancer Res; 2007 Apr; 67(8):3654-62. PubMed ID: 17440077 [TBL] [Abstract][Full Text] [Related]
8. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. Clarke SJ; McStay GP; Halestrap AP J Biol Chem; 2002 Sep; 277(38):34793-9. PubMed ID: 12095984 [TBL] [Abstract][Full Text] [Related]
9. Cyclophilin A Maintains Glioma-Initiating Cell Stemness by Regulating Wnt/β-Catenin Signaling. Wang G; Shen J; Sun J; Jiang Z; Fan J; Wang H; Yu S; Long Y; Liu Y; Bao H; Zhang KX; Han K; Zhu M; Zheng Y; Lin Z; Jiang C; Guo M Clin Cancer Res; 2017 Nov; 23(21):6640-6649. PubMed ID: 28790108 [No Abstract] [Full Text] [Related]
10. Cyclosporine a induces growth arrest or programmed cell death of human glioma cells. Zupanska A; Dziembowska M; Ellert-Miklaszewska A; Gaweda-Walerych K; Kaminska B Neurochem Int; 2005 Nov; 47(6):430-41. PubMed ID: 16087277 [TBL] [Abstract][Full Text] [Related]
11. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. Sokolskaja E; Sayah DM; Luban J J Virol; 2004 Dec; 78(23):12800-8. PubMed ID: 15542632 [TBL] [Abstract][Full Text] [Related]
12. REV3L confers chemoresistance to cisplatin in human gliomas: the potential of its RNAi for synergistic therapy. Wang H; Zhang SY; Wang S; Lu J; Wu W; Weng L; Chen D; Zhang Y; Lu Z; Yang J; Chen Y; Zhang X; Chen X; Xi C; Lu D; Zhao S Neuro Oncol; 2009 Dec; 11(6):790-802. PubMed ID: 19289490 [TBL] [Abstract][Full Text] [Related]
13. PDCD5 promotes cisplatin-induced apoptosis of glioma cells via activating mitochondrial apoptotic pathway. Li H; Zhang X; Song X; Zhu F; Wang Q; Guo C; Liu C; Shi Y; Ma C; Wang X; Zhang L Cancer Biol Ther; 2012 Jul; 13(9):822-30. PubMed ID: 22688731 [TBL] [Abstract][Full Text] [Related]
14. Antioxidant activity is required for the protective effects of cyclophilin A against oxidative stress. Kim K; Oh IK; Yoon KS; Ha J; Kang I; Choe W Mol Med Rep; 2015 Jul; 12(1):712-8. PubMed ID: 25738284 [TBL] [Abstract][Full Text] [Related]
16. Additive anticancer effects of chrysin and low dose cisplatin in human malignant glioma cell (U87) proliferation and evaluation of the mechanistic pathway. Jia WZ; Zhao JC; Sun XL; Yao ZG; Wu HL; Xi ZQ J BUON; 2015; 20(5):1327-36. PubMed ID: 26537082 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Anticancer Effects of Formononetin and Temozolomide on Glioma C6 Cells. Zhang X; Ni Q; Wang Y; Fan H; Li Y Biol Pharm Bull; 2018 Aug; 41(8):1194-1202. PubMed ID: 29848900 [TBL] [Abstract][Full Text] [Related]
18. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents. Vilas-Boas Fde A; da Silva AM; de Sousa LP; Lima KM; Vago JP; Bittencourt LF; Dantas AE; Gomes DA; Vilela MC; Teixeira MM; Barcelos LS J Neurooncol; 2016 Apr; 127(2):253-60. PubMed ID: 26732083 [TBL] [Abstract][Full Text] [Related]
19. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells. Ma J; Yang YR; Chen W; Chen MH; Wang H; Wang XD; Sun LL; Wang FZ; Wang DC Oncol Rep; 2016 Aug; 36(2):676-84. PubMed ID: 27278525 [TBL] [Abstract][Full Text] [Related]
20. CypA: A Potential Target of Tumor Radiotherapy and/or Chemotherapy. Chu MY; Huang HC; Li EM; Xu LY Curr Med Chem; 2021; 28(19):3787-3802. PubMed ID: 33121398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]