These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 20204495)
1. Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Tek AL; Kashihara K; Murata M; Nagaki K Chromosome Res; 2010 Apr; 18(3):337-47. PubMed ID: 20204495 [TBL] [Abstract][Full Text] [Related]
2. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Cheng Z; Dong F; Langdon T; Ouyang S; Buell CR; Gu M; Blattner FR; Jiang J Plant Cell; 2002 Aug; 14(8):1691-704. PubMed ID: 12172016 [TBL] [Abstract][Full Text] [Related]
4. Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat. Tek AL; Kashihara K; Murata M; Nagaki K Chromosome Res; 2011 Nov; 19(8):969-78. PubMed ID: 22065151 [TBL] [Abstract][Full Text] [Related]
5. Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco. Nagaki K; Shibata F; Kanatani A; Kashihara K; Murata M Plant Cell Rep; 2012 Apr; 31(4):771-9. PubMed ID: 22147136 [TBL] [Abstract][Full Text] [Related]
6. Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Nagaki K; Murata M Chromosome Res; 2005; 13(2):195-203. PubMed ID: 15861308 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of functional centromeres of the common bean. Iwata A; Tek AL; Richard MM; Abernathy B; Fonsêca A; Schmutz J; Chen NW; Thareau V; Magdelenat G; Li Y; Murata M; Pedrosa-Harand A; Geffroy V; Nagaki K; Jackson SA Plant J; 2013 Oct; 76(1):47-60. PubMed ID: 23795942 [TBL] [Abstract][Full Text] [Related]
8. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). He Q; Cai Z; Hu T; Liu H; Bao C; Mao W; Jin W BMC Plant Biol; 2015 Apr; 15():105. PubMed ID: 25928652 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006 [TBL] [Abstract][Full Text] [Related]
11. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715 [TBL] [Abstract][Full Text] [Related]
12. Simple and Complex Centromeric Satellites in Talbert PB; Kasinathan S; Henikoff S Genetics; 2018 Mar; 208(3):977-990. PubMed ID: 29305387 [TBL] [Abstract][Full Text] [Related]
13. The NnCenH3 protein and centromeric DNA sequence profiles of Nelumbo nucifera Gaertn. (sacred lotus) reveal the DNA structures and dynamics of centromeres in basal eudicots. Zhu Z; Gui S; Jin J; Yi R; Wu Z; Qian Q; Ding Y Plant J; 2016 Sep; 87(6):568-82. PubMed ID: 27227686 [TBL] [Abstract][Full Text] [Related]
14. Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Lin JY; Jacobus BH; SanMiguel P; Walling JG; Yuan Y; Shoemaker RC; Young ND; Jackson SA Genetics; 2005 Jul; 170(3):1221-30. PubMed ID: 15879505 [TBL] [Abstract][Full Text] [Related]
16. The formation and evolution of centromeric satellite repeats in Saccharum species. Huang Y; Ding W; Zhang M; Han J; Jing Y; Yao W; Hasterok R; Wang Z; Wang K Plant J; 2021 May; 106(3):616-629. PubMed ID: 33547688 [TBL] [Abstract][Full Text] [Related]
17. Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Lamb JC; Kato A; Birchler JA Chromosoma; 2005 Feb; 113(7):337-49. PubMed ID: 15586285 [TBL] [Abstract][Full Text] [Related]
18. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons. Wolfgruber TK; Sharma A; Schneider KL; Albert PS; Koo DH; Shi J; Gao Z; Han F; Lee H; Xu R; Allison J; Birchler JA; Jiang J; Dawe RK; Presting GG PLoS Genet; 2009 Nov; 5(11):e1000743. PubMed ID: 19956743 [TBL] [Abstract][Full Text] [Related]
19. Maize centromeres: organization and functional adaptation in the genetic background of oat. Jin W; Melo JR; Nagaki K; Talbert PB; Henikoff S; Dawe RK; Jiang J Plant Cell; 2004 Mar; 16(3):571-81. PubMed ID: 14973167 [TBL] [Abstract][Full Text] [Related]
20. Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species. Wang G; He Q; Liu F; Cheng Z; Talbert PB; Jin W Chromosoma; 2011 Aug; 120(4):353-65. PubMed ID: 21394438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]