These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Blood separation on microfluidic paper-based analytical devices. Songjaroen T; Dungchai W; Chailapakul O; Henry CS; Laiwattanapaisal W Lab Chip; 2012 Sep; 12(18):3392-8. PubMed ID: 22782449 [TBL] [Abstract][Full Text] [Related]
23. Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals. Park ES; Brown AC; DiFeo MA; Barker TH; Lu H Lab Chip; 2010 Mar; 10(5):571-80. PubMed ID: 20162232 [TBL] [Abstract][Full Text] [Related]
24. Microfluidic devices for cell based high throughput screening. Upadhyaya S; Selvaganapathy PR Lab Chip; 2010 Feb; 10(3):341-8. PubMed ID: 20091006 [TBL] [Abstract][Full Text] [Related]
25. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236 [TBL] [Abstract][Full Text] [Related]
26. Microfluidic cell culture systems for drug research. Wu MH; Huang SB; Lee GB Lab Chip; 2010 Apr; 10(8):939-56. PubMed ID: 20358102 [TBL] [Abstract][Full Text] [Related]
27. Design and simulation of active biochip system. Zhu W; Zhu W; Zhang W; Han F; Dong X; Yan X Biomed Microdevices; 2005 Jun; 7(2):157-60. PubMed ID: 15940432 [TBL] [Abstract][Full Text] [Related]
28. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Saadi W; Wang SJ; Lin F; Jeon NL Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570 [TBL] [Abstract][Full Text] [Related]
29. Cross-talk problem on a fluorescence multi-channel microfluidic chip system. Irawan R; Tjin SC; Yager P; Zhang D Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808 [TBL] [Abstract][Full Text] [Related]
30. Addressing a vascular endothelium array with blood components using underlying microfluidic channels. Genes LI; V Tolan N; Hulvey MK; Martin RS; Spence DM Lab Chip; 2007 Oct; 7(10):1256-9. PubMed ID: 17896007 [TBL] [Abstract][Full Text] [Related]
32. Advantages of synthesizing trans-1,2-cyclohexanediol in a continuous flow microreactor over a standard glass apparatus. Hartung A; Keane MA; Kraft A J Org Chem; 2007 Dec; 72(26):10235-8. PubMed ID: 18001100 [TBL] [Abstract][Full Text] [Related]
36. A microfluidic platform for sequential ligand labeling and cell binding analysis. Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108 [TBL] [Abstract][Full Text] [Related]
37. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Crowley TA; Pizziconi V Lab Chip; 2005 Sep; 5(9):922-9. PubMed ID: 16100575 [TBL] [Abstract][Full Text] [Related]
38. Rapid PCR in a continuous flow device. Hashimoto M; Chen PC; Mitchell MW; Nikitopoulos DE; Soper SA; Murphy MC Lab Chip; 2004 Dec; 4(6):638-45. PubMed ID: 15570378 [TBL] [Abstract][Full Text] [Related]
39. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate. Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510 [TBL] [Abstract][Full Text] [Related]
40. Organic plasma process for simple and substrate-independent surface modification of polymeric BioMEMS devices. Hiratsuka A; Muguruma H; Lee KH; Karube I Biosens Bioelectron; 2004 Jul; 19(12):1667-72. PubMed ID: 15142601 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]