BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20204851)

  • 21. Analysis of protein functions through a bacterial cell-free protein expression system.
    Kigawa T
    Methods Mol Biol; 2010; 607():53-62. PubMed ID: 20204848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of non-natural modules into proteins: structural features beyond the genetic code.
    Arnold U
    Biotechnol Lett; 2009 Aug; 31(8):1129-39. PubMed ID: 19404746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed enzyme evolution and selections for catalysis based on product formation.
    Jestin JL; Kaminski PA
    J Biotechnol; 2004 Sep; 113(1-3):85-103. PubMed ID: 15380650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective non-viral leader for cap-independent translation in a eukaryotic cell-free system.
    Shaloiko LA; Granovsky IE; Ivashina TV; Ksenzenko VN; Shirokov VA; Spirin AS
    Biotechnol Bioeng; 2004 Dec; 88(6):730-9. PubMed ID: 15532099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell-free protein synthesis systems with extracts from cultured human cells.
    Mikami S; Kobayashi T; Imataka H
    Methods Mol Biol; 2010; 607():43-52. PubMed ID: 20204847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system.
    Iffland A; Kohls D; Low S; Luan J; Zhang Y; Kothe M; Cao Q; Kamath AV; Ding YH; Ellenberger T
    Biochemistry; 2005 Jun; 44(23):8312-25. PubMed ID: 15938621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid translation system: a novel cell-free way from gene to protein.
    Hoffmann M; Nemetz C; Madin K; Buchberger B
    Biotechnol Annu Rev; 2004; 10():1-30. PubMed ID: 15504701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel high-throughput (HTP) cloning strategy for site-directed designed chimeragenesis and mutation using the Gateway cloning system.
    Suzuki Y; Kagawa N; Fujino T; Sumiya T; Andoh T; Ishikawa K; Kimura R; Kemmochi K; Ohta T; Tanaka S
    Nucleic Acids Res; 2005 Jul; 33(12):e109. PubMed ID: 16009811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-free protein synthesis technology in NMR high-throughput structure determination.
    Makino S; Goren MA; Fox BG; Markley JL
    Methods Mol Biol; 2010; 607():127-47. PubMed ID: 20204854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of a monomeric fluorescent protein AsGFP499 and its applications in a dual translocation and transcription assay.
    Tasdemir A; Khan F; Jowitt TA; Iuzzolino L; Lohmer S; Corazza S; Schmidt TJ
    Protein Eng Des Sel; 2008 Oct; 21(10):613-22. PubMed ID: 18676975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cell-free protein synthesis system from insect cells.
    Ezure T; Suzuki T; Shikata M; Ito M; Ando E
    Methods Mol Biol; 2010; 607():31-42. PubMed ID: 20204846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple dual selection for functionally active mutants of Plasmodium falciparum dihydrofolate reductase with improved solubility.
    Japrung D; Chusacultanachai S; Yuvaniyama J; Wilairat P; Yuthavong Y
    Protein Eng Des Sel; 2005 Oct; 18(10):457-64. PubMed ID: 16120637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell-free synthesis of recombinant proteins from PCR-amplified genes at a comparable productivity to that of plasmid-based reactions.
    Ahn JH; Chu HS; Kim TW; Oh IS; Choi CY; Hahn GH; Park CG; Kim DM
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1346-52. PubMed ID: 16263088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-free protein synthesis as a promising expression system for recombinant proteins.
    Ge X; Xu J
    Methods Mol Biol; 2012; 824():565-78. PubMed ID: 22160920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wheat germ cell-free protein production system for post-genomic research.
    Madono M; Sawasaki T; Morishita R; Endo Y
    N Biotechnol; 2011 Apr; 28(3):211-7. PubMed ID: 20800705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel cell-free protein synthesis system.
    Sitaraman K; Esposito D; Klarmann G; Le Grice SF; Hartley JL; Chatterjee DK
    J Biotechnol; 2004 Jun; 110(3):257-63. PubMed ID: 15163516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel proteins in emulsions using in vitro compartmentalization.
    Rothe A; Surjadi RN; Power BE
    Trends Biotechnol; 2006 Dec; 24(12):587-92. PubMed ID: 17055094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinatorial library approaches for improving soluble protein expression in Escherichia coli.
    Hart DJ; Tarendeau F
    Acta Crystallogr D Biol Crystallogr; 2006 Jan; 62(Pt 1):19-26. PubMed ID: 16369090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.