BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 20205238)

  • 81. Bone regeneration on computer-designed nano-fibrous scaffolds.
    Chen VJ; Smith LA; Ma PX
    Biomaterials; 2006 Jul; 27(21):3973-9. PubMed ID: 16564086
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells.
    Didekhani R; Sohrabi MR; Seyedjafari E; Soleimani M; Hanaee-Ahvaz H
    Biologicals; 2018 Jul; 54():33-38. PubMed ID: 29871790
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells.
    Pamula E; Filová E; Bacáková L; Lisá V; Adamczyk D
    J Biomed Mater Res A; 2009 May; 89(2):432-43. PubMed ID: 18431773
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Invitro study of adherent mandibular osteoblast-like cells on carrier materials.
    Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration.
    Plikk P; Målberg S; Albertsson AC
    Biomacromolecules; 2009 May; 10(5):1259-64. PubMed ID: 19331401
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP; Chen YY; Hsieh MF; Lee HM
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.
    Zhang X; Chang W; Lee P; Wang Y; Yang M; Li J; Kumbar SG; Yu X
    PLoS One; 2014; 9(1):e85871. PubMed ID: 24475056
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Amide-linkage formed between ammonia plasma treated poly(D,L-lactide acid) scaffolds and bio-peptides: enhancement of cell adhesion and osteogenic differentiation in vitro.
    Xu ZX; Li T; Zhong ZM; Zha DS; Wu SH; Liu FQ; Xiao WD; Jiang XR; Zhang XX; Chen JT
    Biopolymers; 2011 Oct; 95(10):682-94. PubMed ID: 21509742
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering.
    Carfì Pavia F; Conoscenti G; Greco S; La Carrubba V; Ghersi G; Brucato V
    Int J Biol Macromol; 2018 Nov; 119():945-953. PubMed ID: 30081128
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering.
    Fernandes JS; Gentile P; Martins M; Neves NM; Miller C; Crawford A; Pires RA; Hatton P; Reis RL
    Acta Biomater; 2016 Oct; 44():168-77. PubMed ID: 27554018
    [TBL] [Abstract][Full Text] [Related]  

  • 92. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.
    Sadiasa A; Nguyen TH; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications.
    Wang Y; Shi X; Ren L; Yao Y; Zhang F; Wang DA
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):84-92. PubMed ID: 20091906
    [TBL] [Abstract][Full Text] [Related]  

  • 94. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure.
    Cai Q; Shi Y; Shan D; Jia W; Duan S; Deng X; Yang X
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():166-73. PubMed ID: 26117751
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 97. In vitro evaluation of porous poly(L-lactic acid) scaffold reinforced by chitin fibers.
    Li X; Liu X; Dong W; Feng Q; Cui F; Uo M; Akasaka T; Watari F
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):503-9. PubMed ID: 19145630
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Endothelial microvascular networks affect gene-expression profiles and osteogenic potential of tissue-engineered constructs.
    Pedersen TO; Blois AL; Xing Z; Xue Y; Sun Y; Finne-Wistrand A; Akslen LA; Lorens JB; Leknes KN; Fristad I; Mustafa K
    Stem Cell Res Ther; 2013 May; 4(3):52. PubMed ID: 23683577
    [TBL] [Abstract][Full Text] [Related]  

  • 100. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.