BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20205402)

  • 1. An integrated approach to the study of the interaction between proteins and nanoparticles.
    Turci F; Ghibaudi E; Colonna M; Boscolo B; Fenoglio I; Fubini B
    Langmuir; 2010 Jun; 26(11):8336-46. PubMed ID: 20205402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability.
    Lundqvist M; Sethson I; Jonsson BH
    Langmuir; 2004 Nov; 20(24):10639-47. PubMed ID: 15544396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein and nanoparticle adsorption on orthogonal, charge-density-versus-net-charge surface-chemical gradients.
    Beurer E; Venkataraman NV; Sommer M; Spencer ND
    Langmuir; 2012 Feb; 28(6):3159-66. PubMed ID: 22216744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration.
    Marucco A; Turci F; O'Neill L; Byrne HJ; Fubini B; Fenoglio I
    J Colloid Interface Sci; 2014 Apr; 419():86-94. PubMed ID: 24491335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush.
    Labarre D; Vauthier C; Chauvierre C; Petri B; Müller R; Chehimi MM
    Biomaterials; 2005 Aug; 26(24):5075-84. PubMed ID: 15769543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of silica nanoparticles in simulated primary wastewater treatment.
    Jarvie HP; Al-Obaidi H; King SM; Bowes MJ; Lawrence MJ; Drake AF; Green MA; Dobson PJ
    Environ Sci Technol; 2009 Nov; 43(22):8622-8. PubMed ID: 20028062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced resonance Raman spectroscopic characterization of the protein native structure.
    Feng M; Tachikawa H
    J Am Chem Soc; 2008 Jun; 130(23):7443-8. PubMed ID: 18489096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century.
    Lynch I; Cedervall T; Lundqvist M; Cabaleiro-Lago C; Linse S; Dawson KA
    Adv Colloid Interface Sci; 2007 Oct; 134-135():167-74. PubMed ID: 17574200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol).
    Zahr AS; Davis CA; Pishko MV
    Langmuir; 2006 Sep; 22(19):8178-85. PubMed ID: 16952259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact.
    Casals E; Puntes VF
    Nanomedicine (Lond); 2012 Dec; 7(12):1917-30. PubMed ID: 23249335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of gold nanoparticles with common human blood proteins.
    Lacerda SH; Park JJ; Meuse C; Pristinski D; Becker ML; Karim A; Douglas JF
    ACS Nano; 2010 Jan; 4(1):365-79. PubMed ID: 20020753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt concentration and pH-dependent adsorption of two polypeptides on planar and divided alumina surfaces. In situ IR investigations.
    Pradier CM; Humblot V; Stievano L; Méthivier C; Lambert JF
    Langmuir; 2007 Feb; 23(5):2463-71. PubMed ID: 17274633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes in apolipoproteins bound to nanoparticles.
    Cukalevski R; Lundqvist M; Oslakovic C; Dahlbäck B; Linse S; Cedervall T
    Langmuir; 2011 Dec; 27(23):14360-9. PubMed ID: 21978381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy.
    Lombardi JR; Birke RL
    J Chem Phys; 2007 Jun; 126(24):244709. PubMed ID: 17614579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery.
    Park HS; Kim CW; Lee HJ; Choi JH; Lee SG; Yun YP; Kwon IC; Lee SJ; Jeong SY; Lee SC
    Nanotechnology; 2010 Jun; 21(22):225101. PubMed ID: 20453291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of myoglobin to Cu(II)-IDA and Ni(II)-IDA functionalized langmuir monolayers: study of the protein layer structure during the adsorption process by neutron and X-ray reflectivity.
    Kent MS; Yim H; Sasaki DY; Satija S; Seo YS; Majewski J
    Langmuir; 2005 Jul; 21(15):6815-24. PubMed ID: 16008391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.