These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20205413)

  • 1. Reversible attachment of platinum alloy nanoparticles to nonfunctionalized carbon nanotubes.
    Ritz B; Heller H; Myalitsin A; Kornowski A; Martin-Martinez FJ; Melchor S; Dobado JA; Juárez BH; Weller H; Klinke C
    ACS Nano; 2010 Apr; 4(4):2438-44. PubMed ID: 20205413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes.
    Selvaraj V; Vinoba M; Alagar M
    J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.
    Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials.
    Dennany L; Sherrell P; Chen J; Innis PC; Wallace GG; Minett AI
    Phys Chem Chem Phys; 2010 Apr; 12(16):4135-41. PubMed ID: 20379504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode.
    Lin X; Li Y
    Biosens Bioelectron; 2006 Aug; 22(2):253-9. PubMed ID: 16487699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation.
    Cui SK; Guo DJ
    J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.
    Dong L
    Nanotechnology; 2009 Nov; 20(46):465602. PubMed ID: 19843998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes.
    Saito T; Ohshima S; Xu WC; Ago H; Yumura M; Iijima S
    J Phys Chem B; 2005 Jun; 109(21):10647-52. PubMed ID: 16852292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles.
    Jin H; Heller DA; Sharma R; Strano MS
    ACS Nano; 2009 Jan; 3(1):149-58. PubMed ID: 19206261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytically active nanocomposites of electronically coupled carbon nanotubes and platinum nanoparticles formed via vacuum filtration.
    Ostojic GN; Liang YT; Hersam MC
    Nanotechnology; 2009 Oct; 20(43):434019. PubMed ID: 19801759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol.
    Wu B; Hu D; Kuang Y; Liu B; Zhang X; Chen J
    Angew Chem Int Ed Engl; 2009; 48(26):4751-4. PubMed ID: 19452506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes.
    Hrapovic S; Liu Y; Male KB; Luong JH
    Anal Chem; 2004 Feb; 76(4):1083-8. PubMed ID: 14961742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes with platinum-based DNA cross-linkers.
    Ostojic GN; Ireland JR; Hersam MC
    Langmuir; 2008 Sep; 24(17):9784-9. PubMed ID: 18646876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds.
    Bhowmick R; Rajasekaran S; Friebel D; Beasley C; Jiao L; Ogasawara H; Dai H; Clemens B; Nilsson A
    J Am Chem Soc; 2011 Apr; 133(14):5580-6. PubMed ID: 21428292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes.
    Lin Y; Watson KA; Fallbach MJ; Ghose S; Smith JG; Delozier DM; Cao W; Crooks RE; Connell JW
    ACS Nano; 2009 Apr; 3(4):871-84. PubMed ID: 19278218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes.
    Pumera M; Iwai H
    Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen and light sensitive field-effect transistors based on ZnO nanoparticles attached to individual double-walled carbon nanotubes.
    Chanaewa A; Juárez BH; Weller H; Klinke C
    Nanoscale; 2012 Jan; 4(1):251-6. PubMed ID: 22080380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.