These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 20205463)
1. Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: lot-lot variations and influence on gold nanorod synthesis. Rayavarapu RG; Ungureanu C; Krystek P; van Leeuwen TG; Manohar S Langmuir; 2010 Apr; 26(7):5050-5. PubMed ID: 20205463 [TBL] [Abstract][Full Text] [Related]
2. Iodide in CTAB prevents gold nanorod formation. Smith DK; Miller NR; Korgel BA Langmuir; 2009 Aug; 25(16):9518-24. PubMed ID: 19413325 [TBL] [Abstract][Full Text] [Related]
3. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Smith DK; Korgel BA Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021 [TBL] [Abstract][Full Text] [Related]
4. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472 [TBL] [Abstract][Full Text] [Related]
5. The stabilization and targeting of surfactant-synthesized gold nanorods. Rostro-Kohanloo BC; Bickford LR; Payne CM; Day ES; Anderson LJ; Zhong M; Lee S; Mayer KM; Zal T; Adam L; Dinney CP; Drezek RA; West JL; Hafner JH Nanotechnology; 2009 Oct; 20(43):434005. PubMed ID: 19801751 [TBL] [Abstract][Full Text] [Related]
6. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Alkilany AM; Frey RL; Ferry JL; Murphy CJ Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748 [TBL] [Abstract][Full Text] [Related]
7. CTAB promoted synthesis of Au nanorods--temperature effects and stability considerations. Becker R; Liedberg B; Käll PO J Colloid Interface Sci; 2010 Mar; 343(1):25-30. PubMed ID: 19954787 [TBL] [Abstract][Full Text] [Related]
8. Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation. Alkilany AM; Nagaria PK; Wyatt MD; Murphy CJ Langmuir; 2010 Jun; 26(12):9328-33. PubMed ID: 20356032 [TBL] [Abstract][Full Text] [Related]
9. Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate. Iqbal M; Tae G J Nanosci Nanotechnol; 2006 Nov; 6(11):3355-9. PubMed ID: 17252764 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Kim E; Yang J; Choi J; Suh JS; Huh YM; Haam S Nanotechnology; 2009 Sep; 20(36):365602. PubMed ID: 19687560 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Yu C; Varghese L; Irudayaraj J Langmuir; 2007 Aug; 23(17):9114-9. PubMed ID: 17636999 [TBL] [Abstract][Full Text] [Related]
12. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Ferhan AR; Guo L; Kim DH Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Su G; Yang C; Zhu JJ Langmuir; 2015 Jan; 31(2):817-23. PubMed ID: 25521416 [TBL] [Abstract][Full Text] [Related]
14. Overgrowth of gold nanorods by using a binary surfactant mixture. Khlebtsov BN; Khanadeev VA; Ye J; Sukhorukov GB; Khlebtsov NG Langmuir; 2014 Feb; 30(6):1696-703. PubMed ID: 24460392 [TBL] [Abstract][Full Text] [Related]
15. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Wijaya A; Hamad-Schifferli K Langmuir; 2008 Sep; 24(18):9966-9. PubMed ID: 18717601 [TBL] [Abstract][Full Text] [Related]
16. Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Niidome Y; Nakamura Y; Honda K; Akiyama Y; Nishioka K; Kawasaki H; Nakashima N Chem Commun (Camb); 2009 Apr; (13):1754-6. PubMed ID: 19294285 [TBL] [Abstract][Full Text] [Related]
17. The facile removal of CTAB from the surface of gold nanorods. He J; Unser S; Bruzas I; Cary R; Shi Z; Mehra R; Aron K; Sagle L Colloids Surf B Biointerfaces; 2018 Mar; 163():140-145. PubMed ID: 29291499 [TBL] [Abstract][Full Text] [Related]
18. Enhanced stability of gold colloids produced by femtosecond laser synthesis in aqueous solution of CTAB. Sobhan MA; Withford MJ; Goldys EM Langmuir; 2010 Mar; 26(5):3156-9. PubMed ID: 19916535 [TBL] [Abstract][Full Text] [Related]
19. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Zhan Q; Qian J; Li X; He S Nanotechnology; 2010 Feb; 21(5):055704. PubMed ID: 20023304 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of gold nano- and microplates in hexagonal liquid crystals. Wang L; Chen X; Zhan J; Chai Y; Yang C; Xu L; Zhuang W; Jing B J Phys Chem B; 2005 Mar; 109(8):3189-94. PubMed ID: 16851339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]