BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20205464)

  • 1. Context dependence of trinucleotide repeat structures.
    Degtyareva NN; Barber CA; Sengupta B; Petty JT
    Biochemistry; 2010 Apr; 49(14):3024-30. PubMed ID: 20205464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence length dictates repeated CAG folding in three-way junctions.
    Degtyareva NN; Barber CA; Reddish MJ; Petty JT
    Biochemistry; 2011 Feb; 50(4):458-65. PubMed ID: 21142085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-B conformations of CAG repeats using 2-aminopurine.
    Degtyareva NN; Petty JT
    Methods Enzymol; 2011; 492():213-31. PubMed ID: 21333793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies of a trinucleotide repeat sequence using 2-aminopurine.
    Degtyareva NN; Reddish MJ; Sengupta B; Petty JT
    Biochemistry; 2009 Mar; 48(11):2340-6. PubMed ID: 19170594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational and migrational dynamics of slipped-strand DNA three-way junctions containing trinucleotide repeats.
    Hu T; Morten MJ; Magennis SW
    Nat Commun; 2021 Jan; 12(1):204. PubMed ID: 33420051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome.
    Slean MM; Reddy K; Wu B; Nichol Edamura K; Kekis M; Nelissen FH; Aspers RL; Tessari M; Schärer OD; Wijmenga SS; Pearson CE
    Biochemistry; 2013 Feb; 52(5):773-85. PubMed ID: 23339280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence dependence of energy transfer in DNA oligonucleotides.
    Xu DG; Nordlund TM
    Biophys J; 2000 Feb; 78(2):1042-58. PubMed ID: 10653818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal.
    Beaver JM; Lai Y; Rolle SJ; Liu Y
    DNA Repair (Amst); 2016 Dec; 48():17-29. PubMed ID: 27793507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and dynamics of abasic sites in DNA investigated by time-resolved fluorescence of 2-aminopurine.
    Rachofsky EL; Seibert E; Stivers JT; Osman R; Ross JB
    Biochemistry; 2001 Jan; 40(4):957-67. PubMed ID: 11170417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state and time-resolved fluorescence studies indicate an unusual conformation of 2-aminopurine within ATAT and TATA duplex DNA sequences.
    Rai P; Cole TD; Thompson E; Millar DP; Linn S
    Nucleic Acids Res; 2003 May; 31(9):2323-32. PubMed ID: 12711677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences.
    Avila Figueroa A; Delaney S
    J Biol Chem; 2010 May; 285(19):14648-57. PubMed ID: 20228068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins.
    Yu A; Dill J; Mitas M
    Nucleic Acids Res; 1995 Oct; 23(20):4055-7. PubMed ID: 7479064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structures of the Huntington's disease DNA triplets, (CAG)n.
    Mariappan SV; Silks LA; Chen X; Springer PA; Wu R; Moyzis RK; Bradbury EM; Garcia AE; Gupta G
    J Biomol Struct Dyn; 1998 Feb; 15(4):723-44. PubMed ID: 9514249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-energy circular dichroism of 2-aminopurine dinucleotide as a probe of local conformation of DNA and RNA.
    Johnson NP; Baase WA; Von Hippel PH
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3426-31. PubMed ID: 14993592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quencher-free molecular beacons as probes for oligonucleotides containing CAG repeat sequences.
    Kim KT; Veedu RN; Seo YJ; Kim BH
    Chem Commun (Camb); 2014 Feb; 50(13):1561-3. PubMed ID: 24382518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.