BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 20205482)

  • 21. SGLT2 inhibitors and AMPK: The road to cellular housekeeping?
    Safaie N; Masoumi S; Alizadeh S; Mirzajanzadeh P; Nejabati HR; Hajiabbasi M; Alivirdiloo V; Basmenji NC; Derakhshi Radvar A; Majidi Z; Faridvand Y
    Cell Biochem Funct; 2024 Jan; 42(1):e3922. PubMed ID: 38269506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting the kidney and glucose excretion with dapagliflozin: preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of type 2 diabetes mellitus.
    Whaley JM; Tirmenstein M; Reilly TP; Poucher SM; Saye J; Parikh S; List JF
    Diabetes Metab Syndr Obes; 2012; 5():135-48. PubMed ID: 22923998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-silico screening and identification of glycomimetic as potential human sodium-glucose co-transporter 2 inhibitor.
    Ganwir P; Bhadane R; Chaturbhuj GU
    Comput Biol Chem; 2024 Jun; 110():108074. PubMed ID: 38678730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical Analysis of the Effects of SGLT2 Inhibitors on Renal Tubular Sodium, Water and Chloride Homeostasis and Their Role in Influencing Heart Failure Outcomes.
    Packer M; Wilcox CS; Testani JM
    Circulation; 2023 Jul; 148(4):354-372. PubMed ID: 37486998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mechanistic modeling platform of SGLT2 inhibition: Implications for type 1 diabetes.
    Sokolov V; Yakovleva T; Stolbov L; Penland RC; Boulton D; Parkinson J; Tang W
    CPT Pharmacometrics Syst Pharmacol; 2023 Jun; 12(6):831-841. PubMed ID: 36912425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.
    Chino Y; Samukawa Y; Sakai S; Nakai Y; Yamaguchi J; Nakanishi T; Tamai I
    Biopharm Drug Dispos; 2014 Oct; 35(7):391-404. PubMed ID: 25044127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epoxyeicosatrienoic acids improve glucose homeostasis by preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells.
    Fu M; Yu J; Chen Z; Tang Y; Dong R; Yang Y; Luo J; Hu S; Tu L; Xu X
    Mol Cell Endocrinol; 2021 Mar; 523():111149. PubMed ID: 33387601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and potential role of type-2 sodium-glucose transporter inhibitors for management of type 2 diabetes.
    Hardman TC; Dubrey SW
    Diabetes Ther; 2011 Sep; 2(3):133-45. PubMed ID: 22127823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat.
    Masuda T; Watanabe Y; Fukuda K; Watanabe M; Onishi A; Ohara K; Imai T; Koepsell H; Muto S; Vallon V; Nagata D
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F653-F664. PubMed ID: 29790389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Blueprint for Assessing Affordability of SGLT2 Inhibitors in the United States: The Cost-Effectiveness of Dapagliflozin in Three European Countries.
    Khine A; Lin E
    Clin J Am Soc Nephrol; 2022 Dec; 17(12):1707-1709. PubMed ID: 36323445
    [No Abstract]   [Full Text] [Related]  

  • 31. Exploring novel lead scaffolds for SGLT2 inhibitors: Insights from machine learning and molecular dynamics simulations.
    Yu Y; Xia Y; Liang G
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130375. PubMed ID: 38403210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes.
    Gomez-Peralta F; Abreu C; Lecube A; Bellido D; Soto A; Morales C; Brito-Sanfiel M; Umpierrez G
    Diabetes Ther; 2017 Oct; 8(5):953-962. PubMed ID: 28721687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors: Targeting the Kidney to Improve Glycemic Control in Diabetes Mellitus.
    Bays H
    Diabetes Ther; 2013 Dec; 4(2):195-220. PubMed ID: 24142577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Renal glucose handling in diabetes and sodium glucose cotransporter 2 inhibition.
    Poudel RR
    Indian J Endocrinol Metab; 2013 Jul; 17(4):588-93. PubMed ID: 23961473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter.
    Hiraizumi M; Akashi T; Murasaki K; Kishida H; Kumanomidou T; Torimoto N; Nureki O; Miyaguchi I
    Nat Struct Mol Biol; 2024 Jan; 31(1):159-169. PubMed ID: 38057552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SGLT2 inhibitor: 2-way superstar in nephrology?
    Nangaku M
    Kidney Int; 2024 Jun; 105(6):1176-1177. PubMed ID: 38777404
    [No Abstract]   [Full Text] [Related]  

  • 37. A novel strategy for the treatment of diabetes mellitus - sodium glucose co-transport inhibitors.
    Niazi AK; Niazi SH
    N Am J Med Sci; 2010 Dec; 2(12):556-60. PubMed ID: 22558567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes.
    Schaub JA; AlAkwaa FM; McCown PJ; Naik AS; Nair V; Eddy S; Menon R; Otto EA; Demeke D; Hartman J; Fermin D; O'Connor CL; Subramanian L; Bitzer M; Harned R; Ladd P; Pyle L; Pennathur S; Inoki K; Hodgin JB; Brosius FC; Nelson RG; Kretzler M; Bjornstad P
    J Clin Invest; 2023 Mar; 133(5):. PubMed ID: 36637914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does it matter how we measure urinary creatinine in patients taking SGLT2 inhibitors?
    Bock F; Isermann B
    Nephrol Dial Transplant; 2024 Apr; 39(5):739-741. PubMed ID: 38218592
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.