These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
605 related articles for article (PubMed ID: 20205585)
1. Copper metallochaperones. Robinson NJ; Winge DR Annu Rev Biochem; 2010; 79():537-62. PubMed ID: 20205585 [TBL] [Abstract][Full Text] [Related]
2. Thiol-based copper handling by the copper chaperone Atox1. Hatori Y; Inouye S; Akagi R IUBMB Life; 2017 Apr; 69(4):246-254. PubMed ID: 28294521 [TBL] [Abstract][Full Text] [Related]
3. The C-Terminus of Human Copper Importer Ctr1 Acts as a Binding Site and Transfers Copper to Atox1. Kahra D; Kovermann M; Wittung-Stafshede P Biophys J; 2016 Jan; 110(1):95-102. PubMed ID: 26745413 [TBL] [Abstract][Full Text] [Related]
4. Ctr1 Intracellular Loop Is Involved in the Copper Transfer Mechanism to the Atox1 Metallochaperone. Levy AR; Nissim M; Mendelman N; Chill J; Ruthstein S J Phys Chem B; 2016 Dec; 120(48):12334-12345. PubMed ID: 27934216 [TBL] [Abstract][Full Text] [Related]
5. Extended functional repertoire for human copper chaperones. Matson Dzebo M; Ariöz C; Wittung-Stafshede P Biomol Concepts; 2016 Feb; 7(1):29-39. PubMed ID: 26745464 [TBL] [Abstract][Full Text] [Related]
6. Comparison of extracellular Cys/Trp motif between Schizosaccharomyces pombe Ctr4 and Ctr5. Okada M; Miura T; Nakabayashi T J Inorg Biochem; 2017 Apr; 169():97-105. PubMed ID: 28167404 [TBL] [Abstract][Full Text] [Related]
7. Peptide models of Cu(I) and Zn(II) metallochaperones: the effect of pH on coordination and mechanistic implications. Shoshan MS; Shalev DE; Tshuva EY Inorg Chem; 2013 Mar; 52(6):2993-3000. PubMed ID: 23458158 [TBL] [Abstract][Full Text] [Related]
8. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Meir A; Natan A; Moskovitz Y; Ruthstein S Metallomics; 2015 Jul; 7(7):1163-72. PubMed ID: 25940871 [TBL] [Abstract][Full Text] [Related]
9. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. Chakravorty DK; Wang B; Ucisik MN; Merz KM J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374 [TBL] [Abstract][Full Text] [Related]
10. Enthalpy-entropy compensation at play in human copper ion transfer. Niemiec MS; Dingeldein AP; Wittung-Stafshede P Sci Rep; 2015 May; 5():10518. PubMed ID: 26013029 [TBL] [Abstract][Full Text] [Related]
12. Handling of nutrient copper in the bacterial envelope. Stewart LJ; Thaqi D; Kobe B; McEwan AG; Waldron KJ; Djoko KY Metallomics; 2019 Jan; 11(1):50-63. PubMed ID: 30334058 [TBL] [Abstract][Full Text] [Related]
13. An expanding range of functions for the copper chaperone/antioxidant protein Atox1. Hatori Y; Lutsenko S Antioxid Redox Signal; 2013 Sep; 19(9):945-57. PubMed ID: 23249252 [TBL] [Abstract][Full Text] [Related]
14. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Hatori Y; Yan Y; Schmidt K; Furukawa E; Hasan NM; Yang N; Liu CN; Sockanathan S; Lutsenko S Nat Commun; 2016 Feb; 7():10640. PubMed ID: 26879543 [TBL] [Abstract][Full Text] [Related]
15. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I). Brose J; La Fontaine S; Wedd AG; Xiao Z Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867 [TBL] [Abstract][Full Text] [Related]
16. Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis. Blaby-Haas CE; Padilla-Benavides T; Stübe R; Argüello JM; Merchant SS Proc Natl Acad Sci U S A; 2014 Dec; 111(50):E5480-7. PubMed ID: 25468978 [TBL] [Abstract][Full Text] [Related]
17. Regulation of Cu delivery to chloroplast proteins. Tapken W; Ravet K; Shahbaz M; Pilon M Plant Signal Behav; 2015; 10(7):e1046666. PubMed ID: 26251885 [TBL] [Abstract][Full Text] [Related]
18. Biochemical pathway for the biosynthesis of the Cu Canonica F; Hennecke H; Glockshuber R FEBS Lett; 2019 Nov; 593(21):2977-2989. PubMed ID: 31449676 [TBL] [Abstract][Full Text] [Related]
19. T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport. Niemiec MS; Dingeldein AP; Wittung-Stafshede P J Biol Inorg Chem; 2014 Aug; 19(6):1037-47. PubMed ID: 24824562 [TBL] [Abstract][Full Text] [Related]
20. Probing the structural flexibility of the human copper metallochaperone Atox1 dimer and its interaction with the CTR1 c-terminal domain. Levy AR; Yarmiayev V; Moskovitz Y; Ruthstein S J Phys Chem B; 2014 Jun; 118(22):5832-42. PubMed ID: 24837030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]