These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20205762)

  • 1. BglBricks: A flexible standard for biological part assembly.
    Anderson JC; Dueber JE; Leguia M; Wu GC; Goler JA; Arkin AP; Keasling JD
    J Biol Eng; 2010 Jan; 4(1):1. PubMed ID: 20205762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Fusion BioBrick assembly and re-engineering.
    Sleight SC; Bartley BA; Lieviant JA; Sauro HM
    Nucleic Acids Res; 2010 May; 38(8):2624-36. PubMed ID: 20385581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated assembly of standard biological parts.
    Leguia M; Brophy J; Densmore D; Anderson JC
    Methods Enzymol; 2011; 498():363-97. PubMed ID: 21601686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-Brick: A New Standard for Assembly of Biological Parts Using Cpf1.
    Li SY; Zhao GP; Wang J
    ACS Synth Biol; 2016 Dec; 5(12):1383-1388. PubMed ID: 27294364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction of customized inserts for s-treamlined assembly and optimization of BioBrick synthetic genetic circuits.
    Norville JE; Derda R; Gupta S; Drinkwater KA; Belcher AM; Leschziner AE; Knight TF
    J Biol Eng; 2010 Dec; 4():17. PubMed ID: 21172029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylase-assisted subcloning for high throughput BioBrick assembly.
    Matsumura I
    PeerJ; 2020; 8():e9841. PubMed ID: 32974095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BioBrick-based 'Quick Gene Assembly'
    Yamazaki KI; de Mora K; Saitoh K
    Synth Biol (Oxf); 2017 Jan; 2(1):ysx003. PubMed ID: 32995504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SYMBIOSIS: synthetic manipulable biobricks via orthogonal serine integrase systems.
    Ba F; Liu Y; Liu WQ; Tian X; Li J
    Nucleic Acids Res; 2022 Mar; 50(5):2973-2985. PubMed ID: 35191490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introducing a class of standardized and interchangeable parts utilizing programmed ribosomal frameshifts for synthetic biology applications.
    Brandon HE; Friedt JR; Glaister GD; Kharey SK; Smith DD; Stinson ZK; Wieden HJ
    Translation (Austin); 2015; 3(2):e1112458. PubMed ID: 26824028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BioBrick assembly standards and techniques and associated software tools.
    Røkke G; Korvald E; Pahr J; Oyås O; Lale R
    Methods Mol Biol; 2014; 1116():1-24. PubMed ID: 24395353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of Modified BglBrick System in
    Plavec TV; Ključevšek T; Berlec A
    Front Bioeng Biotechnol; 2021; 9():797521. PubMed ID: 34957084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iBrick: a new standard for iterative assembly of biological parts with homing endonucleases.
    Liu JK; Chen WH; Ren SX; Zhao GP; Wang J
    PLoS One; 2014; 9(10):e110852. PubMed ID: 25329380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic assembly tools for synthetic biology.
    Tsvetanova B; Peng L; Liang X; Li K; Yang JP; Ho T; Shirley J; Xu L; Potter J; Kudlicki W; Peterson T; Katzen F
    Methods Enzymol; 2011; 498():327-48. PubMed ID: 21601684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eugene--a domain specific language for specifying and constraining synthetic biological parts, devices, and systems.
    Bilitchenko L; Liu A; Cheung S; Weeding E; Xia B; Leguia M; Anderson JC; Densmore D
    PLoS One; 2011 Apr; 6(4):e18882. PubMed ID: 21559524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The case for decoupling assembly and submission standards to maintain a more flexible registry of biological parts.
    Alnahhas RN; Slater B; Huang Y; Mortensen C; Monk JW; Okasheh Y; Howard MD; Gottel NR; Hammerling MJ; Barrick JE
    J Biol Eng; 2014; 8(1):28. PubMed ID: 25525459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA assembly for synthetic biology: from parts to pathways and beyond.
    Ellis T; Adie T; Baldwin GS
    Integr Biol (Camb); 2011 Feb; 3(2):109-18. PubMed ID: 21246151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint universal modular plasmids (JUMP): a flexible vector platform for synthetic biology.
    Valenzuela-Ortega M; French C
    Synth Biol (Oxf); 2021; 6(1):ysab003. PubMed ID: 33623824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe.
    Fogg PCM; Haley JA; Stark WM; Smith MCM
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.