These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20205887)

  • 1. Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells.
    Molnár M; Fu Y; Friberg P; Chen Y
    J Nanobiotechnology; 2010 Feb; 8(1):2. PubMed ID: 20205887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand.
    Frederick MT; Weiss EA
    ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of surface states on blinking characteristics of single colloidal CdSe-CdS/ZnS core-multishell quantum dot.
    Xu H; Brismar H; Fu Y
    J Colloid Interface Sci; 2017 Nov; 505():528-536. PubMed ID: 28645036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots.
    Aruda KO; Amin VA; Thompson CM; Lau B; Nepomnyashchii AB; Weiss EA
    Langmuir; 2016 Apr; 32(14):3354-64. PubMed ID: 27002248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Quantum Dot Labeling on Endothelial Progenitor Cell Function and Viability.
    Molnar M; Friberg P; Fu Y; Brisslert M; Adams M; Chen Y
    Cell Med; 2010; 1(2):105-12. PubMed ID: 26966634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton spin relaxation in colloidal CdSe quantum dots at room temperature.
    Ma H; Jin Z; Zhang Z; Li G; Ma G
    J Phys Chem A; 2012 Mar; 116(9):2018-23. PubMed ID: 22304455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrocrystals of Colloidal Quantum Dots in Anthracene: Exciton Transfer and Polarized Emission.
    Soran-Erdem Z; Erdem T; Hernandez-Martinez PL; Akgul MZ; Gaponik N; Demir HV
    J Phys Chem Lett; 2015 May; 6(9):1767-72. PubMed ID: 26263347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Interligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots.
    Harris RD; Amin VA; Lau B; Weiss EA
    ACS Nano; 2016 Jan; 10(1):1395-403. PubMed ID: 26727219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One- and two-photon induced QD-based energy transfer and the influence of multiple QD excitations.
    Dayal S; Burda C
    Photochem Photobiol Sci; 2008 May; 7(5):605-13. PubMed ID: 18465017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulated fluorescence of colloidal quantum dots embedded in a porous alumina membrane.
    Xu H; Li L; Manneberg O; Russom A; Gylfason KB; Brismar H; Fu Y
    J Phys Chem B; 2013 Nov; 117(45):14151-6. PubMed ID: 24134567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO₂ films by transient absorption and single dot fluorescence spectroscopy.
    Song N; Zhu H; Liu Z; Huang Z; Wu D; Lian T
    ACS Nano; 2013 Feb; 7(2):1599-608. PubMed ID: 23281781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Processes within Quantum Dot-Molecule Complexes.
    Harris RD; Bettis Homan S; Kodaimati M; He C; Nepomnyashchii AB; Swenson NK; Lian S; Calzada R; Weiss EA
    Chem Rev; 2016 Nov; 116(21):12865-12919. PubMed ID: 27499491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallomics Study of CdSe/ZnS Quantum Dots in HepG2 Cells.
    Peng L; He M; Chen B; Qiao Y; Hu B
    ACS Nano; 2015 Oct; 9(10):10324-34. PubMed ID: 26389814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. n-Doping of Quantum Dots by Lithium Ion Intercalation.
    Chang WJ; Park KY; Zhu Y; Wolverton C; Hersam MC; Weiss EA
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36523-36529. PubMed ID: 32666788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoimaging: photophysical and pharmaceutical characterization of poly-lactide-co-glycolide nanoparticles engineered with quantum dots.
    Pederzoli F; Ruozi B; Pracucci E; Signore G; Zapparoli M; Forni F; Vandelli MA; Ratto G; Tosi G
    Nanotechnology; 2016 Jan; 27(1):015704. PubMed ID: 26597894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of fluorescence decays of colloidal CdSe-CdS/ZnS quantum dots unraveled by time-resolved fluorescence measurement.
    Xu H; Chmyrov V; Widengren J; Brismar H; Fu Y
    Phys Chem Chem Phys; 2015 Nov; 17(41):27588-95. PubMed ID: 26426293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength encoded analytical imaging and fiber optic sensing with pH sensitive CdTe quantum dots.
    Maule C; Gonçalves H; Mendonça C; Sampaio P; Esteves da Silva JC; Jorge P
    Talanta; 2010 Mar; 80(5):1932-8. PubMed ID: 20152435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric response function for colloidal semiconductor quantum dots.
    Karpulevich A; Bui H; Wang Z; Hapke S; Palencia Ramírez C; Weller H; Bester G
    J Chem Phys; 2019 Dec; 151(22):224103. PubMed ID: 31837677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.