These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20206000)

  • 1. Modeling of combined electroosmotic and capillary flow in microchannels.
    Waghmare PR; Mitra SK
    Anal Chim Acta; 2010 Mar; 663(2):117-26. PubMed ID: 20206000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels.
    Waghmare PR; Mitra SK
    J Colloid Interface Sci; 2010 Nov; 351(2):561-9. PubMed ID: 20813377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modelling of adsorption and transport processes in capillary electrochromatography: open-tubular geometry.
    Paces M; Kosek J; Marek M; Tallarek U; Seidel-Morgenstern A
    Electrophoresis; 2003 Jan; 24(3):380-9. PubMed ID: 12569530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical expressions for pH-regulated electroosmotic flow in microchannels.
    Hsu JP; Huang CH
    Colloids Surf B Biointerfaces; 2012 May; 93():260-2. PubMed ID: 22236502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microchip micellar electrokinetic chromatography based on one functionalized ionic liquid and its excellent performance on proteins separation.
    Xu Y; Li J; Wang E
    J Chromatogr A; 2008 Oct; 1207(1-2):175-80. PubMed ID: 18783780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microemulsion electrokinetic chromatography coupling with field amplified sample injection and electroosmotic flow suppressant for analysis of some quinolizidine alkaloids.
    Yu L; Xu X; Huang L; Lin J; Chen G
    J Chromatogr A; 2008 Jul; 1198-1199():220-5. PubMed ID: 18533172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel.
    Ray B; Reddy PD; Bandyopadhyay D; Joo SW; Sharma A; Qian S; Biswas G
    Electrophoresis; 2011 Nov; 32(22):3257-67. PubMed ID: 22038622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient zeta-potential measurements in hydrophobic, TOPAS microfluidic substrates.
    Tandon V; Bhagavatula SK; Kirby BJ
    Electrophoresis; 2009 Aug; 30(15):2656-67. PubMed ID: 19637218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L; Ren CL
    Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Joule heating on electrokinetic transport.
    Cetin B; Li D
    Electrophoresis; 2008 Mar; 29(5):994-1005. PubMed ID: 18271065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.
    Walhagen K; Huber MI; Hennessy TP; Hearn MT
    Biopolymers; 2003; 71(4):429-53. PubMed ID: 14517897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow.
    Johann R; Renaud P
    Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of nucleic acid adsorption on 3D prisms in microchannels.
    Hu Y; Li D
    Anal Chim Acta; 2007 Jan; 581(1):42-52. PubMed ID: 17386424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials.
    Zhao C; Yang C
    Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.