BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20206000)

  • 1. Modeling of combined electroosmotic and capillary flow in microchannels.
    Waghmare PR; Mitra SK
    Anal Chim Acta; 2010 Mar; 663(2):117-26. PubMed ID: 20206000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels.
    Waghmare PR; Mitra SK
    J Colloid Interface Sci; 2010 Nov; 351(2):561-9. PubMed ID: 20813377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modelling of adsorption and transport processes in capillary electrochromatography: open-tubular geometry.
    Paces M; Kosek J; Marek M; Tallarek U; Seidel-Morgenstern A
    Electrophoresis; 2003 Jan; 24(3):380-9. PubMed ID: 12569530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical expressions for pH-regulated electroosmotic flow in microchannels.
    Hsu JP; Huang CH
    Colloids Surf B Biointerfaces; 2012 May; 93():260-2. PubMed ID: 22236502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microchip micellar electrokinetic chromatography based on one functionalized ionic liquid and its excellent performance on proteins separation.
    Xu Y; Li J; Wang E
    J Chromatogr A; 2008 Oct; 1207(1-2):175-80. PubMed ID: 18783780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microemulsion electrokinetic chromatography coupling with field amplified sample injection and electroosmotic flow suppressant for analysis of some quinolizidine alkaloids.
    Yu L; Xu X; Huang L; Lin J; Chen G
    J Chromatogr A; 2008 Jul; 1198-1199():220-5. PubMed ID: 18533172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel.
    Ray B; Reddy PD; Bandyopadhyay D; Joo SW; Sharma A; Qian S; Biswas G
    Electrophoresis; 2011 Nov; 32(22):3257-67. PubMed ID: 22038622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient zeta-potential measurements in hydrophobic, TOPAS microfluidic substrates.
    Tandon V; Bhagavatula SK; Kirby BJ
    Electrophoresis; 2009 Aug; 30(15):2656-67. PubMed ID: 19637218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L; Ren CL
    Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Joule heating on electrokinetic transport.
    Cetin B; Li D
    Electrophoresis; 2008 Mar; 29(5):994-1005. PubMed ID: 18271065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.
    Walhagen K; Huber MI; Hennessy TP; Hearn MT
    Biopolymers; 2003; 71(4):429-53. PubMed ID: 14517897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow.
    Johann R; Renaud P
    Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of nucleic acid adsorption on 3D prisms in microchannels.
    Hu Y; Li D
    Anal Chim Acta; 2007 Jan; 581(1):42-52. PubMed ID: 17386424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials.
    Zhao C; Yang C
    Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.