These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 20206000)
21. Electrokinetic flow near an undulated, charged surface. Lin SH Colloids Surf B Biointerfaces; 2010 Nov; 81(1):224-34. PubMed ID: 20675104 [TBL] [Abstract][Full Text] [Related]
22. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Chen L; Conlisk AT Biomed Microdevices; 2009 Feb; 11(1):251-8. PubMed ID: 18850273 [TBL] [Abstract][Full Text] [Related]
23. Model and verification of electrokinetic flow and transport in a micro-electrophoresis device. Barz DP; Ehrhard P Lab Chip; 2005 Sep; 5(9):949-58. PubMed ID: 16100579 [TBL] [Abstract][Full Text] [Related]
24. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems. Szekely L; Freitag R Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304 [TBL] [Abstract][Full Text] [Related]
25. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles. Grimes BA; Liapis AI J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509 [TBL] [Abstract][Full Text] [Related]
26. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel. Daghighi Y; Li D Electrophoresis; 2010 Mar; 31(5):868-78. PubMed ID: 20191548 [TBL] [Abstract][Full Text] [Related]
27. Sample stacking and sweeping in microemulsion electrokinetic chromatography under pH-suppressed electroosmotic flow. Zhu J; Qi S; Zhang H; Chen X; Hu Z J Chromatogr A; 2008 May; 1192(2):319-22. PubMed ID: 18433762 [TBL] [Abstract][Full Text] [Related]
28. Derivation of governing equation describing time-dependent penetration length in channel flows driven by non-mechanical forces. Bhattacharya S; Gurung D Anal Chim Acta; 2010 May; 666(1-2):51-4. PubMed ID: 20433964 [TBL] [Abstract][Full Text] [Related]
29. Electrokinetic transport in microchannels with random roughness. Wang M; Kang Q Anal Chem; 2009 Apr; 81(8):2953-61. PubMed ID: 19301844 [TBL] [Abstract][Full Text] [Related]
30. Analysis of effect of electrolyte types on electrokinetic energy conversion in nanoscale capillaries. Chein R; Tsai K; Yeh L Electrophoresis; 2010 Jan; 31(3):535-45. PubMed ID: 20119963 [TBL] [Abstract][Full Text] [Related]
31. An electrokinetic/hydrodynamic flow microfluidic CE-ESI-MS interface utilizing a hydrodynamic flow restrictor for delivery of samples under low EOF conditions. Razunguzwa TT; Lenke J; Timperman AT Lab Chip; 2005 Aug; 5(8):851-5. PubMed ID: 16027936 [TBL] [Abstract][Full Text] [Related]
32. Analyses of gibberellins in coconut (Cocos nucifera L.) water by partial filling-micellar electrokinetic chromatography-mass spectrometry with reversal of electroosmotic flow. Ge L; Yong JW; Tan SN; Hua L; Ong ES Electrophoresis; 2008 May; 29(10):2126-34. PubMed ID: 18409157 [TBL] [Abstract][Full Text] [Related]
33. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Sridharan S; Zhu J; Hu G; Xuan X Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988 [TBL] [Abstract][Full Text] [Related]
34. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels. Hu Y; Werner C; Li D J Colloid Interface Sci; 2004 Dec; 280(2):527-36. PubMed ID: 15533426 [TBL] [Abstract][Full Text] [Related]
35. Automated electric valve for electrokinetic separation in a networked microfluidic chip. Cui H; Huang Z; Dutta P; Ivory CF Anal Chem; 2007 Feb; 79(4):1456-65. PubMed ID: 17297944 [TBL] [Abstract][Full Text] [Related]
36. Estimation and comparison of zeta-potentials of silica-based anion-exchange type porous particles for capillary electrochromatography from electrophoretic and electroosmotic mobility. Sánchez Muñoz OL; Hernández EP; Lämmerhofer M; Lindner W; Kenndler E Electrophoresis; 2003 Jan; 24(3):390-8. PubMed ID: 12569531 [TBL] [Abstract][Full Text] [Related]
37. Quantification of electrical field-induced flow reversal in a microchannel. Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the SDS-induced electroosmotic flow in micellar electrokinetic chromatography with cationic polyelectrolyte-coated capillaries. Pranaityte B; Padarauskas A Electrophoresis; 2006 May; 27(10):1915-21. PubMed ID: 16596708 [TBL] [Abstract][Full Text] [Related]
39. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows. Chein R; Yang YC; Lin Y Electrophoresis; 2006 Feb; 27(3):640-9. PubMed ID: 16380954 [TBL] [Abstract][Full Text] [Related]
40. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Yan D; Yang C; Miao J; Lam Y; Huang X Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]