BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20206007)

  • 1. Determination of ferrous and ferric iron in aqueous biological solutions.
    Pepper SE; Borkowski M; Richmann MK; Reed DT
    Anal Chim Acta; 2010 Mar; 663(2):172-7. PubMed ID: 20206007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach.
    Deo RP; Rittmann BE; Reed DT
    Biodegradation; 2011 Sep; 22(5):921-9. PubMed ID: 21234648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation.
    de Jong J; Schoemann V; Lannuzel D; Tison JL; Mattielli N
    Anal Chim Acta; 2008 Aug; 623(2):126-39. PubMed ID: 18620916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment.
    Polettini A; Pomi R; Rolle E
    Chemosphere; 2007 Jan; 66(5):866-77. PubMed ID: 16860848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of dissolved iron from the aqueous system with excess ligand.
    Hasegawa H; Rahman IM; Kinoshita S; Maki T; Furusho Y
    Chemosphere; 2011 Feb; 82(8):1161-7. PubMed ID: 21208637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion.
    Liang C; Bruell CJ; Marley MC; Sperry KL
    Chemosphere; 2004 Jun; 55(9):1225-33. PubMed ID: 15081763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY.
    Shin HY; Singhal N; Park JW
    Chemosphere; 2007 Jun; 68(6):1129-34. PubMed ID: 17349671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions.
    van der Maas P; van de Sandt T; Klapwijk B; Lens P
    Biotechnol Prog; 2003; 19(4):1323-8. PubMed ID: 12892497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.
    Ji Y; Ferronato C; Salvador A; Yang X; Chovelon JM
    Sci Total Environ; 2014 Feb; 472():800-8. PubMed ID: 24342085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective extraction, separation and speciation of iron in different samples using 4-acetyl-5-methyl-1-phenyl-1H-pyrazole-3-carboxylic acid.
    Saçmaci S; Kartal S
    Anal Chim Acta; 2008 Aug; 623(1):46-52. PubMed ID: 18611456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of bathophenanthrolinedisulfonic acid and ferrozine as chelators of iron(II) in reduction reactions.
    Cowart RE; Singleton FL; Hind JS
    Anal Biochem; 1993 May; 211(1):151-5. PubMed ID: 8323027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) on Cr(VI) reduction by Fe(II).
    Tzou YM; Wang MK; Loeppert RH
    Chemosphere; 2003 Jun; 51(9):993-1000. PubMed ID: 12697190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of functional redox reactive proteins and identification by mass spectrometry results in several terminal Fe(III)-reducing candidate proteins in Shewanella oneidensis MR-1.
    Elias DA; Yang F; Mottaz HM; Beliaev AS; Lipton MS
    J Microbiol Methods; 2007 Feb; 68(2):367-75. PubMed ID: 17137661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+ transport.
    Dhungana S; Anderson DS; Mietzner TA; Crumbliss AL
    Biochemistry; 2005 Jul; 44(28):9606-18. PubMed ID: 16008346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of EDTA, NTA and picolinic acid on Th(IV) mobility in a ternary system with natural sand.
    Reinoso-Maset E; Worsfold PJ; Keith-Roach MJ
    Environ Pollut; 2012 Mar; 162():399-405. PubMed ID: 22243891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the kinetics of Fe(II) oxidation in the presence of citrate and salicylate in aqueous solutions at pH 6.0-8.0 and 25 degrees C.
    Pham AN; Waite TD
    J Phys Chem A; 2008 Jun; 112(24):5395-405. PubMed ID: 18507361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative HPLC-ICP-MS analysis of antimony redox speciation in complex sample matrices: new insights into the Sb-chemistry causing poor chromatographic recoveries.
    Hansen C; Schmidt B; Larsen EH; Gammelgaard B; Stürup S; Hansen HR
    Analyst; 2011 Mar; 136(5):996-1002. PubMed ID: 21157586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.