BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 20206247)

  • 21. Regulation of oxidative-stress responsive genes by arecoline in human keratinocytes.
    Thangjam GS; Kondaiah P
    J Periodontal Res; 2009 Oct; 44(5):673-82. PubMed ID: 19364390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smokeless tobacco, oxidative stress, apoptosis, and antioxidants in human oral keratinocytes.
    Bagchi M; Balmoori J; Bagchi D; Ray SD; Kuszynski C; Stohs SJ
    Free Radic Biol Med; 1999 Apr; 26(7-8):992-1000. PubMed ID: 10232844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of smokeless tobacco extract on human gingival keratinocyte levels of prostaglandin E2 and interleukin-1.
    Johnson GK; Poore TK; Payne JB; Organ CC
    J Periodontol; 1996 Feb; 67(2):116-24. PubMed ID: 8667131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subchronic effects of smokeless tobacco extract (STE) on hepatic lipid peroxidation, DNA damage and excretion of urinary metabolites in rats.
    Bagchi M; Bagchi D; Hassoun EA; Stohs SJ
    Toxicology; 1998 May; 127(1-3):29-38. PubMed ID: 9699791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protective effects of free radical scavengers and antioxidants against smokeless tobacco extract (STE)-induced oxidative stress in macrophage J774A.1 cell cultures.
    Bagchi D; Hassoun EA; Bagchi M; Stohs SJ
    Arch Environ Contam Toxicol; 1995 Oct; 29(3):424-8. PubMed ID: 7487162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smokeless tobacco-exposed oral keratinocytes increase macromolecular efflux from the in situ oral mucosa.
    Rubinstein I; Gao XP; Pakhlevaniants S; Oda D
    Am J Physiol; 1998 Jan; 274(1):R104-11. PubMed ID: 9458905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro effects of a smokeless tobacco extract on the production of reactive oxygen species by human oral epidermal cells and rat hepatic mitochondria and microsomes, and peritoneal macrophages.
    Bagchi M; Bagchi D; Stohs SJ
    Arch Environ Contam Toxicol; 1996 Mar; 30(3):418-22. PubMed ID: 8854974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitogen-activated protein kinase signaling and its association with oxidative stress and apoptosis in lead-exposed hepatocytes.
    Mujaibel LM; Kilarkaje N
    Environ Toxicol; 2015 May; 30(5):513-29. PubMed ID: 24293362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of IL-24 in human oral keratinocytes stimulated with Tannerella forsythia.
    Ko YK; An SJ; Han NY; Lee H; Choi BK
    Mol Oral Microbiol; 2019 Oct; 34(5):209-218. PubMed ID: 31332969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive oxygen species production and MAPK activation are implicated in tetrahydrobiopterin-induced SH-SY5Y cell death.
    Chongthammakun V; Sanvarinda Y; Chongthammakun S
    Neurosci Lett; 2009 Jan; 449(3):178-82. PubMed ID: 19013215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential role of autophagy in smokeless tobacco extract-induced cytotoxicity and in morin-induced protection in oral epithelial cells.
    Ganguli A; Das A; Nag D; Bhattacharya S; Chakrabarti G
    Food Chem Toxicol; 2016 Apr; 90():160-70. PubMed ID: 26891815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of nitric oxide in the induction of apoptosis by smokeless tobacco extract.
    Mangipudy RS; Vishwanatha JK
    Mol Cell Biochem; 1999 Oct; 200(1-2):51-7. PubMed ID: 10569183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of nitric oxide-induced apoptosis by nicotine in oral epithelial cells.
    Banerjee AG; Gopalakrishnan VK; Vishwanatha JK
    Mol Cell Biochem; 2007 Nov; 305(1-2):113-21. PubMed ID: 17636461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A proteomic analysis of the effect of MAPK pathway activation on L-glutamate-induced neuronal cell death.
    Kang S; Kim EY; Bahn YJ; Chung JW; Lee DH; Park SG; Yoon TS; Park BC; Bae KH
    Cell Mol Biol Lett; 2007; 12(1):139-47. PubMed ID: 17124546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smokeless tobacco potentiates VIP-induced DNA synthesis and inactivates NEP 24.11 in oral keratinocytes.
    Rubinstein I
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C391-6. PubMed ID: 10666035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Smokeless tobacco extract (STE)-induced toxicity in mammalian cells is mediated by the disruption of cellular microtubule network: a key mechanism of cytotoxicity.
    Das A; Bhattacharya A; Chakrabarty S; Ganguli A; Chakrabarti G
    PLoS One; 2013; 8(7):e68224. PubMed ID: 23874548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adrenergic signaling in human oral keratinocytes and wound repair.
    Steenhuis P; Huntley RE; Gurenko Z; Yin L; Dale BA; Fazel N; Isseroff RR
    J Dent Res; 2011 Feb; 90(2):186-92. PubMed ID: 21127260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of smokeless tobacco on chemically transformed hamster oral keratinocytes: role of angiotensin I-converting enzyme.
    Müns G; Vishwanatha JK; Rubinstein I
    Carcinogenesis; 1994 Jul; 15(7):1325-7. PubMed ID: 8033307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smokeless tobacco contains a nonnicotine inhibitor of bone metabolism.
    Galvin RJ; Ramp WK; Lenz LG
    Toxicol Appl Pharmacol; 1988 Sep; 95(2):292-300. PubMed ID: 3420616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparision of Pure Nicotine and Smokeless Tobacco Extract Induced Formation of 8-OH-dG.
    Yildiz D
    Toxicol Mech Methods; 2004; 14(4):253-6. PubMed ID: 20021139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.