These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20206381)

  • 1. The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury.
    King VR; Alovskaya A; Wei DY; Brown RA; Priestley JV
    Biomaterials; 2010 May; 31(15):4447-56. PubMed ID: 20206381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord.
    King VR; Phillips JB; Hunt-Grubbe H; Brown R; Priestley JV
    Biomaterials; 2006 Jan; 27(3):485-96. PubMed ID: 16102813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat.
    King VR; Henseler M; Brown RA; Priestley JV
    Exp Neurol; 2003 Aug; 182(2):383-98. PubMed ID: 12895449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat.
    King VR; Hewazy D; Alovskaya A; Phillips JB; Brown RA; Priestley JV
    Neuroscience; 2010 Jun; 168(2):523-30. PubMed ID: 20347014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
    Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH
    Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury.
    Stokols S; Tuszynski MH
    Biomaterials; 2006 Jan; 27(3):443-51. PubMed ID: 16099032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair.
    Martín-López E; Darder M; Ruiz-Hitzky E; Nieto Sampedro M
    Biomed Mater Eng; 2013; 23(5):405-21. PubMed ID: 23988711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of cellular organization and axonal regeneration through linear PLA foam implants in acute and chronic spinal cord injury.
    Cai J; Ziemba KS; Smith GM; Jin Y
    J Biomed Mater Res A; 2007 Nov; 83(2):512-20. PubMed ID: 17503492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition.
    Jones LL; Sajed D; Tuszynski MH
    J Neurosci; 2003 Oct; 23(28):9276-88. PubMed ID: 14561854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-dried poly(D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord.
    Patist CM; Mulder MB; Gautier SE; Maquet V; Jérôme R; Oudega M
    Biomaterials; 2004 Apr; 25(9):1569-82. PubMed ID: 14697859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration.
    Tuinstra HM; Margul DJ; Goodman AG; Boehler RM; Holland SJ; Zelivyanskaya ML; Cummings BJ; Anderson AJ; Shea LD
    Tissue Eng Part A; 2014 Mar; 20(5-6):1027-37. PubMed ID: 24168314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axon regeneration through scaffold into distal spinal cord after transection.
    Chen BK; Knight AM; de Ruiter GC; Spinner RJ; Yaszemski MJ; Currier BL; Windebank AJ
    J Neurotrauma; 2009 Oct; 26(10):1759-71. PubMed ID: 19413501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord.
    Fukushima K; Enomoto M; Tomizawa S; Takahashi M; Wakabayashi Y; Itoh S; Kuboki Y; Shinomiya K
    J Med Dent Sci; 2008 Mar; 55(1):71-9. PubMed ID: 19845152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic and extrinsic determinants of central nervous system axon outgrowth into alginate-based anisotropic hydrogels.
    Pawar K; Prang P; Müller R; Caioni M; Bogdahn U; Kunz W; Weidner N
    Acta Biomater; 2015 Nov; 27():131-139. PubMed ID: 26310676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulating regeneration in the damaged spinal cord.
    Priestley JV; Ramer MS; King VR; McMahon SB; Brown RA
    J Physiol Paris; 2002; 96(1-2):123-33. PubMed ID: 11755791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection.
    Gao M; Lu P; Bednark B; Lynam D; Conner JM; Sakamoto J; Tuszynski MH
    Biomaterials; 2013 Feb; 34(5):1529-36. PubMed ID: 23182350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.