These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 20206596)

  • 1. Modulation of intracellular chloride channels by ATP and Mg2+.
    Kominkova V; Malekova L; Tomaskova Z; Slezak P; Szewczyk A; Ondrias K
    Biochim Biophys Acta; 2010; 1797(6-7):1300-12. PubMed ID: 20206596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of glybenclamide on mitochondrial chloride channels from rat heart.
    Kominkova V; Ondrias K; Tomaskova Z
    Biochem Biophys Res Commun; 2013 May; 434(4):836-40. PubMed ID: 23611782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels.
    Malekova L; Tomaskova J; Novakova M; Stefanik P; Kopacek J; Lakatos B; Pastorekova S; Krizanova O; Breier A; Ondrias K
    Pflugers Arch; 2007 Nov; 455(2):349-57. PubMed ID: 17611769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the hepatocyte rough endoplasmic reticulum single chloride channel by nucleotide-Mg2+ interaction.
    Ashrafpour M; Babaei JF; Saghiri R; Sepehri H; Sharifi H
    Pflugers Arch; 2012 Aug; 464(2):175-82. PubMed ID: 22684478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KATP channels of mouse skeletal muscle: mechanism of channel blockage by AMP-PNP.
    Hehl S; Neumcke B
    Eur Biophys J; 1994; 23(4):231-7. PubMed ID: 7805625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Ca2+-activated K+ channels by Mg2+ and ATP in frog oxyntic cells.
    Komatsu H; Mieno H; Tamaki K; Inoue M; Kajiyama G; Seyama I
    Pflugers Arch; 1996 Feb; 431(4):494-503. PubMed ID: 8596691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation.
    Verrecchia F; Duthe F; Duval S; Duchatelle I; Sarrouilhe D; Herve JC
    J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):447-59. PubMed ID: 10087344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart.
    Bednarczyk P; Dołowy K; Szewczyk A
    FEBS Lett; 2005 Mar; 579(7):1625-32. PubMed ID: 15757652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium-chloride promiscuous channels in mitochondrial membranes.
    Ondrias K; Malekova L; Krizanova O
    Gen Physiol Biophys; 2008 Mar; 27(1):38-44. PubMed ID: 18436982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent modulation of mSlo, a cloned calcium-dependent potassium channel.
    Müller M; Madan D; Levitan IB
    Neuropharmacology; 1996; 35(7):877-86. PubMed ID: 8938718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac mitochondrial ATP-sensitive potassium channel is activated by nitric oxide in vitro.
    Ljubkovic M; Shi Y; Cheng Q; Bosnjak Z; Jiang MT
    FEBS Lett; 2007 Sep; 581(22):4255-9. PubMed ID: 17714708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP inhibition and rectification of a Ca2+-activated anion channel in sarcoplasmic reticulum of skeletal muscle.
    Ahern GP; Laver DR
    Biophys J; 1998 May; 74(5):2335-51. PubMed ID: 9591661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ATP concentration on CFTR Cl- channels: a kinetic analysis of channel regulation.
    Winter MC; Sheppard DN; Carson MR; Welsh MJ
    Biophys J; 1994 May; 66(5):1398-403. PubMed ID: 7520292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial chloride channels: electrophysiological characterization and pH induction of channel pore dilation.
    Misak A; Grman M; Malekova L; Novotova M; Markova J; Krizanova O; Ondrias K; Tomaskova Z
    Eur Biophys J; 2013 Sep; 42(9):709-20. PubMed ID: 23903554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the voltage-dependent K+ current by intracellular Mg2+ in rat aortic smooth muscle cells.
    Tammaro P; Smith AL; Crowley BL; Smirnov SV
    Cardiovasc Res; 2005 Feb; 65(2):387-96. PubMed ID: 15639477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating of the skeletal calcium release channel by ATP is inhibited by protein phosphatase 1 but not by Mg2+.
    Sonnleitner A; Fleischer S; Schindler H
    Cell Calcium; 1997 Apr; 21(4):283-90. PubMed ID: 9160164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.
    Tomasek M; Misak A; Grman M; Tomaskova Z
    FEBS Lett; 2017 Aug; 591(15):2251-2260. PubMed ID: 28640976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP dependence of the ICl,swell channel varies with rate of cell swelling. Evidence for two modes of channel activation.
    Bond T; Basavappa S; Christensen M; Strange K
    J Gen Physiol; 1999 Mar; 113(3):441-56. PubMed ID: 10051519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual actions of the metabolic inhibitor, sodium azide on K(ATP) channel currents in the rat CRI-G1 insulinoma cell line.
    Harvey J; Hardy SC; Ashford ML
    Br J Pharmacol; 1999 Jan; 126(1):51-60. PubMed ID: 10051120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg2+ and ATP-dependence of volume-sensitive Cl- channels in human epithelial cells.
    Oiki S; Kubo M; Okada Y
    Jpn J Physiol; 1994; 44 Suppl 2():S77-9. PubMed ID: 7752558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.