BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 20206606)

  • 1. A novel copper(II) coordination at His186 in full-length murine prion protein.
    Watanabe Y; Hiraoka W; Igarashi M; Ito K; Shimoyama Y; Horiuchi M; Yamamori T; Yasui H; Kuwabara M; Inagaki F; Inanami O
    Biochem Biophys Res Commun; 2010 Apr; 394(3):522-8. PubMed ID: 20206606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational change in full-length mouse prion: a site-directed spin-labeling study.
    Inanami O; Hashida S; Iizuka D; Horiuchi M; Hiraoka W; Shimoyama Y; Nakamura H; Inagaki F; Kuwabara M
    Biochem Biophys Res Commun; 2005 Sep; 335(3):785-92. PubMed ID: 16095563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of pH-sensitive regions in the mouse prion by the cysteine-scanning spin-labeling ESR technique.
    Watanabe Y; Inanami O; Horiuchi M; Hiraoka W; Shimoyama Y; Inagaki F; Kuwabara M
    Biochem Biophys Res Commun; 2006 Nov; 350(3):549-56. PubMed ID: 17022940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein.
    Cereghetti GM; Schweiger A; Glockshuber R; Van Doorslaer S
    Biophys J; 2001 Jul; 81(1):516-25. PubMed ID: 11423433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies of Cu(II)[peptide] binding motifs: Cu[HGGG] and Cu[HG] as models for Cu(II) binding to the prion protein octarepeat region.
    Pushie MJ; Rauk A
    J Biol Inorg Chem; 2003 Jan; 8(1-2):53-65. PubMed ID: 12459899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper refolding of prion protein.
    Wong BS; Vénien-Bryan C; Williamson RA; Burton DR; Gambetti P; Sy MS; Brown DR; Jones IM
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1217-24. PubMed ID: 11027613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the human prion PrP(106-126) sequence with copper(II), manganese(II), and zinc(II): NMR and EPR studies.
    Gaggelli E; Bernardi F; Molteni E; Pogni R; Valensin D; Valensin G; Remelli M; Luczkowski M; Kozlowski H
    J Am Chem Soc; 2005 Jan; 127(3):996-1006. PubMed ID: 15656638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron paramagnetic resonance measurements of the ferrous mononuclear site of phthalate dioxygenase substituted with alternate divalent metal ions: direct evidence for ligation of two histidines in the copper(II)-reconstituted protein.
    Coulter ED; Moon N; Batie CJ; Dunham WR; Ballou DP
    Biochemistry; 1999 Aug; 38(34):11062-72. PubMed ID: 10460161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helix packing in the lactose permease determined by metal-nitroxide interaction.
    Voss J; Hubbell WL; Kaback HR
    Biochemistry; 1998 Jan; 37(1):211-6. PubMed ID: 9425041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae.
    Arnesano F; Banci L; Bertini I; Felli IC; Luchinat C; Thompsett AR
    J Am Chem Soc; 2003 Jun; 125(24):7200-8. PubMed ID: 12797793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence that all three histidine residues coordinate to Cu(II) in amyloid-beta1-16.
    Shin BK; Saxena S
    Biochemistry; 2008 Sep; 47(35):9117-23. PubMed ID: 18690709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface.
    Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ
    Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micellar environments induce structuring of the N-terminal tail of the prion protein.
    Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L
    Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
    Bocharova OV; Breydo L; Salnikov VV; Baskakov IV
    Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prion and doppel proteins bind to granule cells of the cerebellum.
    Legname G; Nelken P; Guan Z; Kanyo ZF; DeArmond SJ; Prusiner SB
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16285-90. PubMed ID: 12446843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The second Cu(II)-binding site in a proton-rich environment interferes with the aggregation of amyloid-beta(1-40) into amyloid fibrils.
    Jun S; Gillespie JR; Shin BK; Saxena S
    Biochemistry; 2009 Nov; 48(45):10724-32. PubMed ID: 19824649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p.
    Andruzzi L; Nakano M; Nilges MJ; Blackburn NJ
    J Am Chem Soc; 2005 Nov; 127(47):16548-58. PubMed ID: 16305244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycan chains modulate prion protein binding to immobilized metal ions.
    Moudjou M; Bernard J; Sabuncu E; Langevin C; Laude H
    Neurochem Int; 2007 Apr; 50(5):689-95. PubMed ID: 17293006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new paradigm for enzymatic control of α-cleavage and β-cleavage of the prion protein.
    McDonald AJ; Dibble JP; Evans EG; Millhauser GL
    J Biol Chem; 2014 Jan; 289(2):803-13. PubMed ID: 24247244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.