These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 20206606)
1. A novel copper(II) coordination at His186 in full-length murine prion protein. Watanabe Y; Hiraoka W; Igarashi M; Ito K; Shimoyama Y; Horiuchi M; Yamamori T; Yasui H; Kuwabara M; Inagaki F; Inanami O Biochem Biophys Res Commun; 2010 Apr; 394(3):522-8. PubMed ID: 20206606 [TBL] [Abstract][Full Text] [Related]
2. Conformational change in full-length mouse prion: a site-directed spin-labeling study. Inanami O; Hashida S; Iizuka D; Horiuchi M; Hiraoka W; Shimoyama Y; Nakamura H; Inagaki F; Kuwabara M Biochem Biophys Res Commun; 2005 Sep; 335(3):785-92. PubMed ID: 16095563 [TBL] [Abstract][Full Text] [Related]
3. Identification of pH-sensitive regions in the mouse prion by the cysteine-scanning spin-labeling ESR technique. Watanabe Y; Inanami O; Horiuchi M; Hiraoka W; Shimoyama Y; Inagaki F; Kuwabara M Biochem Biophys Res Commun; 2006 Nov; 350(3):549-56. PubMed ID: 17022940 [TBL] [Abstract][Full Text] [Related]
4. Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein. Cereghetti GM; Schweiger A; Glockshuber R; Van Doorslaer S Biophys J; 2001 Jul; 81(1):516-25. PubMed ID: 11423433 [TBL] [Abstract][Full Text] [Related]
5. Computational studies of Cu(II)[peptide] binding motifs: Cu[HGGG] and Cu[HG] as models for Cu(II) binding to the prion protein octarepeat region. Pushie MJ; Rauk A J Biol Inorg Chem; 2003 Jan; 8(1-2):53-65. PubMed ID: 12459899 [TBL] [Abstract][Full Text] [Related]
6. Copper refolding of prion protein. Wong BS; Vénien-Bryan C; Williamson RA; Burton DR; Gambetti P; Sy MS; Brown DR; Jones IM Biochem Biophys Res Commun; 2000 Oct; 276(3):1217-24. PubMed ID: 11027613 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the human prion PrP(106-126) sequence with copper(II), manganese(II), and zinc(II): NMR and EPR studies. Gaggelli E; Bernardi F; Molteni E; Pogni R; Valensin D; Valensin G; Remelli M; Luczkowski M; Kozlowski H J Am Chem Soc; 2005 Jan; 127(3):996-1006. PubMed ID: 15656638 [TBL] [Abstract][Full Text] [Related]
8. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
9. Electron paramagnetic resonance measurements of the ferrous mononuclear site of phthalate dioxygenase substituted with alternate divalent metal ions: direct evidence for ligation of two histidines in the copper(II)-reconstituted protein. Coulter ED; Moon N; Batie CJ; Dunham WR; Ballou DP Biochemistry; 1999 Aug; 38(34):11062-72. PubMed ID: 10460161 [TBL] [Abstract][Full Text] [Related]
10. Helix packing in the lactose permease determined by metal-nitroxide interaction. Voss J; Hubbell WL; Kaback HR Biochemistry; 1998 Jan; 37(1):211-6. PubMed ID: 9425041 [TBL] [Abstract][Full Text] [Related]
11. A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae. Arnesano F; Banci L; Bertini I; Felli IC; Luchinat C; Thompsett AR J Am Chem Soc; 2003 Jun; 125(24):7200-8. PubMed ID: 12797793 [TBL] [Abstract][Full Text] [Related]
12. Direct evidence that all three histidine residues coordinate to Cu(II) in amyloid-beta1-16. Shin BK; Saxena S Biochemistry; 2008 Sep; 47(35):9117-23. PubMed ID: 18690709 [TBL] [Abstract][Full Text] [Related]
13. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924 [TBL] [Abstract][Full Text] [Related]
14. Micellar environments induce structuring of the N-terminal tail of the prion protein. Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659 [TBL] [Abstract][Full Text] [Related]
15. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Bocharova OV; Breydo L; Salnikov VV; Baskakov IV Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423 [TBL] [Abstract][Full Text] [Related]
16. Prion and doppel proteins bind to granule cells of the cerebellum. Legname G; Nelken P; Guan Z; Kanyo ZF; DeArmond SJ; Prusiner SB Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16285-90. PubMed ID: 12446843 [TBL] [Abstract][Full Text] [Related]
17. The second Cu(II)-binding site in a proton-rich environment interferes with the aggregation of amyloid-beta(1-40) into amyloid fibrils. Jun S; Gillespie JR; Shin BK; Saxena S Biochemistry; 2009 Nov; 48(45):10724-32. PubMed ID: 19824649 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p. Andruzzi L; Nakano M; Nilges MJ; Blackburn NJ J Am Chem Soc; 2005 Nov; 127(47):16548-58. PubMed ID: 16305244 [TBL] [Abstract][Full Text] [Related]
19. Glycan chains modulate prion protein binding to immobilized metal ions. Moudjou M; Bernard J; Sabuncu E; Langevin C; Laude H Neurochem Int; 2007 Apr; 50(5):689-95. PubMed ID: 17293006 [TBL] [Abstract][Full Text] [Related]
20. A new paradigm for enzymatic control of α-cleavage and β-cleavage of the prion protein. McDonald AJ; Dibble JP; Evans EG; Millhauser GL J Biol Chem; 2014 Jan; 289(2):803-13. PubMed ID: 24247244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]