These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20206921)

  • 41. Ifosfamide and cyclophosphamide: effects on immunosurveillance.
    Binotto G; Trentin L; Semenzato G
    Oncology; 2003; 65 Suppl 2():17-20. PubMed ID: 14586142
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The dark side of cyclophosphamide: cyclophosphamide-mediated ablation of regulatory T cells.
    Becker JC; Schrama D
    J Invest Dermatol; 2013 Jun; 133(6):1462-5. PubMed ID: 23673502
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Suppressor cells in cyclophosphamide-treated autoimmune mice.
    Greeley EH; Segre M; Segre D
    Immunopharmacology; 1982 Aug; 4(4):355-63. PubMed ID: 6214524
    [No Abstract]   [Full Text] [Related]  

  • 44. Abrogation of antigenic competition phenomenon by a low dose of cyclophosphamide.
    Folch H; Lopetegui F; Stegmeier E
    Zentralbl Veterinarmed B; 1980; 27(2):139-43. PubMed ID: 6451120
    [No Abstract]   [Full Text] [Related]  

  • 45. Boosting In-Vivo Anti-Tumor Immunity with an Oral Microparticulate Breast Cancer Vaccine and Low-Dose Cyclophosphamide.
    Mulla N; Chablani L; Parenky AC; D'Souza MJ
    Vaccines (Basel); 2023 Feb; 11(3):. PubMed ID: 36992127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cyclophosphamide and suppressor cell function.
    Taube T; Brown Z; Williams DG
    Lancet; 1981 Mar; 1(8222):720. PubMed ID: 6110932
    [No Abstract]   [Full Text] [Related]  

  • 47. Cyclophosphamide enhances the immunosuppressive action of its own active metabolites.
    Telegin LY; Pisarev VM; Pevnitsky LA
    Dokl Biol Sci; 2008; 423():437-9. PubMed ID: 19213430
    [No Abstract]   [Full Text] [Related]  

  • 48. Chemotherapy reinforces anti-tumor immune response and enhances clinical efficacy of immune checkpoint inhibitors.
    Zhang L; Zhou C; Zhang S; Chen X; Liu J; Xu F; Liang W
    Front Oncol; 2022; 12():939249. PubMed ID: 36003765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neither Tumor-Infiltrating Lymphocytes nor Cytotoxic T Cells Predict Enhanced Benefit from Chemotherapy in the DBCG77B Phase III Clinical Trial.
    Shenasa E; Stovgaard ES; Jensen MB; Asleh K; Riaz N; Gao D; Leung S; Ejlertsen B; Laenkholm AV; Nielsen TO
    Cancers (Basel); 2022 Aug; 14(15):. PubMed ID: 35954471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions.
    Yi M; Zheng X; Niu M; Zhu S; Ge H; Wu K
    Mol Cancer; 2022 Jan; 21(1):28. PubMed ID: 35062949
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors.
    Galluzzi L; Humeau J; Buqué A; Zitvogel L; Kroemer G
    Nat Rev Clin Oncol; 2020 Dec; 17(12):725-741. PubMed ID: 32760014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Limited activity of metronomic cyclophosphamide and pembrolizumab for soft tissue sarcomas.
    Lien IC; Pollack SM
    Transl Gastroenterol Hepatol; 2018; 3():4. PubMed ID: 29441369
    [No Abstract]   [Full Text] [Related]  

  • 53. Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (Th1, Th2) to immune-mediated tumour cell death induced by NAC.
    Kaewkangsadan V; Verma C; Eremin JM; Cowley G; Ilyas M; Eremin O
    BMC Cancer; 2018 Feb; 18(1):123. PubMed ID: 29390966
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Differential Contribution of the Innate Immune System to a Good Pathological Response in the Breast and Axillary Lymph Nodes Induced by Neoadjuvant Chemotherapy in Women with Large and Locally Advanced Breast Cancers.
    Kaewkangsadan V; Verma C; Eremin JM; Cowley G; Ilyas M; Satthaporn S; Eremin O
    J Immunol Res; 2017; 2017():1049023. PubMed ID: 28913366
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Negative Correlation between Circulating CD4
    Ndure J; Noho-Konteh F; Adetifa JU; Cox M; Barker F; Le MT; Sanyang LC; Drammeh A; Whittle HC; Clarke E; Plebanski M; Rowland-Jones SL; Flanagan KL
    Front Immunol; 2017; 8():921. PubMed ID: 28855899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulatory role of regulatory T cells in a murine model of severe equine asthma.
    Henríquez C; Morán G; Carrasco C; Sarmiento J; Barría M; Folch H; Uberti B
    BMC Vet Res; 2017 Apr; 13(1):117. PubMed ID: 28454585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer.
    Kaewkangsadan V; Verma C; Eremin JM; Cowley G; Ilyas M; Eremin O
    J Immunol Res; 2016; 2016():4757405. PubMed ID: 27777963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterisation of the oxysterol metabolising enzyme pathway in mismatch repair proficient and deficient colorectal cancer.
    Swan R; Alnabulsi A; Cash B; Alnabulsi A; Murray GI
    Oncotarget; 2016 Jul; 7(29):46509-46527. PubMed ID: 27341022
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lenalidomide and cyclophosphamide immunoregulation in patients with metastatic, castration-resistant prostate cancer.
    Wang J; McGuire TR; Britton HC; Schwarz JK; Loberiza FR; Meza JL; Talmadge JE
    Clin Exp Metastasis; 2015 Feb; 32(2):111-24. PubMed ID: 25617965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tecemotide: an antigen-specific cancer immunotherapy.
    Wurz GT; Kao CJ; Wolf M; DeGregorio MW
    Hum Vaccin Immunother; 2014; 10(11):3383-93. PubMed ID: 25483673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.