BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20206935)

  • 1. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D; Rao G; Berton E
    J Biomech; 2010 Jun; 43(9):1827-30. PubMed ID: 20206935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of additional load on the moments of the agonist and antagonist muscle groups at the knee joint during closed chain exercise.
    Rao G; Amarantini D; Berton E
    J Electromyogr Kinesiol; 2009 Jun; 19(3):459-66. PubMed ID: 18249140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An EMG-driven biomechanical model that accounts for the decrease in moment generation capacity during a dynamic fatigued condition.
    Rao G; Berton E; Amarantini D; Vigouroux L; Buchanan TS
    J Biomech Eng; 2010 Jul; 132(7):071003. PubMed ID: 20590281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A hybrid method including optimization and force-EMG relationship for predicting muscle force].
    Zhang X; Ye M; Zhang L; Nie W; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1260-3. PubMed ID: 20095482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hamstring antagonist moment estimation using clinically applicable models: Muscle dependency and synergy effects.
    Kellis E; Katis A
    J Electromyogr Kinesiol; 2008 Feb; 18(1):144-53. PubMed ID: 17055745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions.
    Amarantini D; Martin L
    J Biomech; 2004 Sep; 37(9):1393-404. PubMed ID: 15275847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting.
    Sigward SM; Powers CM
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):41-8. PubMed ID: 16209900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-activation alters the linear versus non-linear impression of the EMG-torque relationship of trunk muscles.
    Brown SH; McGill SM
    J Biomech; 2008; 41(3):491-7. PubMed ID: 18054943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of a practicable EMG-moment model for antagonist moment prediction.
    Kellis E; Kouvelioti V; Ioakimidis P
    Neurosci Lett; 2005 Aug; 383(3):266-71. PubMed ID: 15955419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of a practicable EMG to force model for knee muscles.
    Doorenbosch CA; Harlaar J
    Neurosci Lett; 2004 Sep; 368(1):78-81. PubMed ID: 15342138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadriceps femoris electromyogram during concentric, isometric and eccentric phases of fatiguing dynamic knee extensions.
    Pincivero DM; Gandhi V; Timmons MK; Coelho AJ
    J Biomech; 2006; 39(2):246-54. PubMed ID: 16321626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid static optimisation method to estimate muscle forces during muscle co-activation.
    Son J; Hwang S; Kim Y
    Comput Methods Biomech Biomed Engin; 2012; 15(3):249-54. PubMed ID: 21302162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine.
    Gagnon D; Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C
    J Biomech; 2011 May; 44(8):1521-9. PubMed ID: 21439569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of EMG processing on biomechanical models of muscle joint systems: sensitivity of trunk muscle moments, spinal forces, and stability.
    Staudenmann D; Potvin JR; Kingma I; Stegeman DF; van Dieën JH
    J Biomech; 2007; 40(4):900-9. PubMed ID: 16765965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.