These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 20207025)

  • 21. Coordinated memory replay in the visual cortex and hippocampus during sleep.
    Ji D; Wilson MA
    Nat Neurosci; 2007 Jan; 10(1):100-7. PubMed ID: 17173043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Awake Reactivation of Prior Experiences Consolidates Memories and Biases Cognition.
    Tambini A; Davachi L
    Trends Cogn Sci; 2019 Oct; 23(10):876-890. PubMed ID: 31445780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Offline neuronal activity and synaptic plasticity during sleep and memory consolidation.
    Goto A; Hayashi Y
    Neurosci Res; 2023 Apr; 189():29-36. PubMed ID: 36584924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.
    Villalobos C; Maldonado PE; Valdés JL
    PLoS One; 2017; 12(2):e0171304. PubMed ID: 28158285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age-associated changes in waking hippocampal sharp-wave ripples.
    Cowen SL; Gray DT; Wiegand JL; Schimanski LA; Barnes CA
    Hippocampus; 2020 Jan; 30(1):28-38. PubMed ID: 29981255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of sleep-specific brain activity versus reduced stimulus interference on declarative memory consolidation.
    Piosczyk H; Holz J; Feige B; Spiegelhalder K; Weber F; Landmann N; Kuhn M; Frase L; Riemann D; Voderholzer U; Nissen C
    J Sleep Res; 2013 Aug; 22(4):406-13. PubMed ID: 23398120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Memory trace replay: the shaping of memory consolidation by neuromodulation.
    Atherton LA; Dupret D; Mellor JR
    Trends Neurosci; 2015 Sep; 38(9):560-70. PubMed ID: 26275935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hippocampal ripples as a mode of communication with cortical and subcortical areas.
    Todorova R; Zugaro M
    Hippocampus; 2020 Jan; 30(1):39-49. PubMed ID: 30069976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampal Offline Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples.
    van de Ven GM; Trouche S; McNamara CG; Allen K; Dupret D
    Neuron; 2016 Dec; 92(5):968-974. PubMed ID: 27840002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. About sleep's role in memory.
    Rasch B; Born J
    Physiol Rev; 2013 Apr; 93(2):681-766. PubMed ID: 23589831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sharp wave/ripple network oscillations and learning-associated hippocampal maps.
    Csicsvari J; Dupret D
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120528. PubMed ID: 24366138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slow-wave sleep and the consolidation of long-term memory.
    Born J
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():16-21. PubMed ID: 20509828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sleep, plasticity and memory from molecules to whole-brain networks.
    Abel T; Havekes R; Saletin JM; Walker MP
    Curr Biol; 2013 Sep; 23(17):R774-88. PubMed ID: 24028961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
    Meier K; Merseburg A; Isbrandt D; Marguet SL; Morellini F
    J Neurosci; 2020 Sep; 40(37):7105-7118. PubMed ID: 32817247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ripples make waves: binding structured activity and plasticity in hippocampal networks.
    Sadowski JH; Jones MW; Mellor JR
    Neural Plast; 2011; 2011():960389. PubMed ID: 21961073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconfiguration of the cortical-hippocampal interaction may compensate for Sharp-Wave Ripple deficits in APP/PS1 mice and support spatial memory formation.
    Jura B; Młoźniak D; Goszczyńska H; Blinowska K; Biendon N; Macrez N; Meyrand P; Bem T
    PLoS One; 2020; 15(12):e0243767. PubMed ID: 33382724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hippocampal and cortical place cell plasticity: implications for episodic memory.
    Frank LM; Brown EN; Stanley GB
    Hippocampus; 2006; 16(9):775-84. PubMed ID: 16921502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep in Humans Stabilizes Pattern Separation Performance.
    Hanert A; Weber FD; Pedersen A; Born J; Bartsch T
    J Neurosci; 2017 Dec; 37(50):12238-12246. PubMed ID: 29118106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.
    Miyamoto D; Hirai D; Murayama M
    Front Neural Circuits; 2017; 11():92. PubMed ID: 29213231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory stabilization.
    Berkers RMWJ; Ekman M; van Dongen EV; Takashima A; Barth M; Paller KA; Fernández G
    Sci Rep; 2018 Nov; 8(1):16958. PubMed ID: 30446718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.