BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20207128)

  • 21. Combining Rubber Filings with Fresh Rubber.
    Simonton WS
    Int Dent J (Phila); 1894 Apr; 15(4):255. PubMed ID: 37911675
    [No Abstract]   [Full Text] [Related]  

  • 22. Flexural Response of Functionally Graded Rubberized Concrete Beams.
    Albidah AS; Alsaif AS
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of recycled rubber self-compacting concrete: Experimental findings and machine learning-based evaluation.
    Sobuz MHR; Joy LP; Akid ASM; Aditto FS; Jabin JA; Hasan NMS; Meraz MM; Kabbo MKI; Datta SD
    Heliyon; 2024 Mar; 10(6):e27793. PubMed ID: 38524552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties of concrete mixes containing tire rubber and brick powder exposed to sulfuric acid and cured in water: A comparative study.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2023 Jun; 9(6):e17514. PubMed ID: 37408900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overview of Concrete Performance Made with Waste Rubber Tires: A Step toward Sustainable Concrete.
    Ahmad J; Zhou Z; Majdi A; Alqurashi M; Deifalla AF
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study on mechanical properties of rubberised concrete containing burnt clay powder.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2022 Jun; 8(6):e09614. PubMed ID: 35706938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic Experimental Assessment of POFA Concrete Incorporating Waste Tire Rubber Aggregate.
    Mhaya AM; Baharom S; Baghban MH; Nehdi ML; Faridmehr I; Huseien GF; Algaifi HA; Ismail M
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm.
    Huang XY; Wu KY; Wang S; Lu T; Lu YF; Deng WC; Li HM
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of Strength Properties for Concrete Containing Fine-Rubber Particles Using UPV.
    Choi Y; Kim IH; Lim HJ; Cho CG
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical Properties and Durability Performance of Recycled Aggregate Concrete Containing Crumb Rubber.
    Ataria RB; Wang YC
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of Lime-Cement Concrete Containing Various Amounts of Waste Tire Powder under Different Ground Moisture Conditions.
    Mohammadifar L; Miraki H; Rahmani A; Jahandari S; Mehdizadeh B; Rasekh H; Samadi P; Samali B
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2021 Dec; 7(12):e08565. PubMed ID: 34917825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lightweight Cement Conglomerates Based on End-of-Life Tire Rubber: Effect of the Grain Size, Dosage and Addition of Perlite on the Physical and Mechanical Properties.
    Petrella A; Notarnicola M
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33466425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmentally Sustainable Cement Composites Based on End-of-Life Tyre Rubber and Recycled Waste Porous Glass.
    Petrella A; Di Mundo R; De Gisi S; Todaro F; Labianca C; Notarnicola M
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31658637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks.
    Hadzima-Nyarko M; Nyarko EK; Ademović N; Miličević I; Kalman Šipoš T
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber.
    Kaewunruen S; Li D; Chen Y; Xiang Z
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29987214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Rubber Size on Properties of Crumb Rubber Mortars.
    Yu Y; Zhu H
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.
    Siringi G; Abolmaali A; Aswath PB
    ScientificWorldJournal; 2015; 2015():863706. PubMed ID: 26161440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Waste tyre rubberized concrete: properties at fresh and hardened state.
    Aiello MA; Leuzzi F
    Waste Manag; 2010; 30(8-9):1696-704. PubMed ID: 20207128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of concrete containing a high volume of tire-rubber particles.
    Khaloo AR; Dehestani M; Rahmatabadi P
    Waste Manag; 2008 Dec; 28(12):2472-82. PubMed ID: 18372166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.