BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 2020734)

  • 1. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy.
    Yanch JC; Zhou XL; Brownell GL
    Radiat Res; 1991 Apr; 126(1):1-20. PubMed ID: 2020734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of dose components in head phantom for boron neutron capture therapy.
    da Silva AX; Crispim VR
    Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam.
    Konijnenberg MW; Dewit LG; Mijnheer BJ; Raaijmakers CP; Watkins PR
    Radiat Res; 1995 Jun; 142(3):327-39. PubMed ID: 7761583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of an accelerator-based neutron source for neutron capture therapy.
    Terlizzi R; Colonna N; Colangelo P; Maiorana A; Marrone S; Rainò A; Tagliente G; Variale V
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S292-5. PubMed ID: 19406649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GE PETtrace cyclotron as a neutron source for boron neutron capture therapy.
    Bosko A; Zhilchenkov D; Reece WD
    Appl Radiat Isot; 2004 Nov; 61(5):1057-62. PubMed ID: 15308192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerator-based epithermal neutron beam design for neutron capture therapy.
    Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE
    Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.
    Zamenhof RG; Clement SD; Harling OK; Brenner JF; Wazer DE; Madoc-Jones H; Yanch JC
    Basic Life Sci; 1990; 54():283-305. PubMed ID: 2268244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of the new THOR epithermal neutron beam for BNCT.
    Tung CJ; Wang YL; Hsu FY; Chang SL; Liu YW
    Appl Radiat Isot; 2004 Nov; 61(5):861-4. PubMed ID: 15308158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production by 72 MeV protons of keV neutrons for 10B neutron capture therapy.
    Condé H; Crawford JF; Dahl B; Grusell E; Larsson B; Petterson CB; Reist H; Sjöstrand NG; Sornsuntisook O; Thuresson L
    Strahlenther Onkol; 1989 Apr; 165(4):340-2. PubMed ID: 2540542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different MC techniques to evaluate BNCT dose profiles in phantom exposed tovarious neutron fields.
    Durisi E; Koivunoro H; Visca L; Borla O; Zanini A
    Radiat Prot Dosimetry; 2010 Mar; 138(3):213-22. PubMed ID: 19939825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimized neutron-beam shaping assembly for accelerator-based BNCT.
    Burlon AA; Kreiner AJ; Valda AA; Minsky DM
    Appl Radiat Isot; 2004 Nov; 61(5):811-5. PubMed ID: 15308149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdosimetry for boron neutron capture therapy.
    Wuu CS; Amols HI; Kliauga P; Reinstein LE; Saraf S
    Radiat Res; 1992 Jun; 130(3):355-9. PubMed ID: 1594762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interpretation of dose calculations and cell-survival measurements for the boron neutron capture therapy of brain tumours with 24 keV neurons.
    Mill AJ; Harrison KG
    Br J Radiol; 1988 Dec; 61(732):1147-54. PubMed ID: 3219496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from (7)Li(p,n)(7)Be reaction.
    Kim KO; Kim JK; Kim SY
    Appl Radiat Isot; 2009; 67(7-8):1173-9. PubMed ID: 19303311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved dose targeting for a clinical epithermal neutron capture beam using optional (6)Li filtration.
    Binns PJ; Riley KJ; Ostrovsky Y; Gao W; Albritton JR; Kiger WS; Harling OK
    Int J Radiat Oncol Biol Phys; 2007 Apr; 67(5):1484-91. PubMed ID: 17394946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum therapeutic depth in thermal neutron capture therapy.
    Allen BJ
    Strahlenther Onkol; 1993 Jan; 169(1):34-41. PubMed ID: 8434338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.