BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2020739)

  • 1. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers.
    Ljungman M
    Radiat Res; 1991 Apr; 126(1):58-64. PubMed ID: 2020739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-bound proteins contribute much more than soluble intracellular compounds to the intrinsic protection against radiation-induced DNA strand breaks in human cells.
    Ljungman M; Nyberg S; Nygren J; Eriksson M; Ahnström G
    Radiat Res; 1991 Aug; 127(2):171-6. PubMed ID: 1947001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of chromatin structure on the induction of DNA double strand breaks by ionizing radiation.
    Elia MC; Bradley MO
    Cancer Res; 1992 Mar; 52(6):1580-6. PubMed ID: 1540967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in radiation-induced formation of DNA double-strand breaks as a function of chromatin structure.
    Warters RL; Lyons BW
    Radiat Res; 1992 Jun; 130(3):309-18. PubMed ID: 1594757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radioprotection of human cell nuclear DNA by polyamines: radiosensitivity of chromatin is influenced by tightly bound spermine.
    Warters RL; Newton GL; Olive PL; Fahey RC
    Radiat Res; 1999 Mar; 151(3):354-62. PubMed ID: 10073674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioprotection against the formation of DNA double-strand breaks in cellular DNA but not native cellular chromatin by the polyamine spermine.
    Chiu S; Oleinick NL
    Radiat Res; 1997 Aug; 148(2):188-92. PubMed ID: 9254739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction and repair of DNA strand breaks and 1-beta-D-arabinofuranosylcytosine-detectable sites in 40-75 kVp X-irradiated compared to 60Co gamma-irradiated human cell lines.
    Mirzayans R; Waters R; Paterson MC
    Radiat Res; 1988 Apr; 114(1):168-85. PubMed ID: 3353503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient protection against oxidative DNA damage in chromatin.
    Ljungman M; Hanawalt PC
    Mol Carcinog; 1992; 5(4):264-9. PubMed ID: 1323299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constraints to DNA unwinding near radiation-induced strand breaks in Ewing's sarcoma cells.
    Jorgensen TJ; Prasad SC; Brennan TP; Dritschilo A
    Radiat Res; 1990 Sep; 123(3):320-4. PubMed ID: 2217729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of DNA-protein cross-links induced by 4'-(9-acridinylamino)-methanesulfon-m-anisidide and by gamma-radiation.
    Chiu SM; Xue LY; Friedman LR; Oleinick NL
    Cancer Res; 1989 Feb; 49(4):910-4. PubMed ID: 2912561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.
    Elmroth K; Nygren J; Stenerlöw B; Hultborn R
    Int J Radiat Biol; 2003 Oct; 79(10):809-16. PubMed ID: 14630540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of chromatin structure and radical scavengers on yields of radiation-induced 8-oxo-dG and DNA strand breaks in cellular model systems.
    Svoboda P; Harms-Ringdahl M
    Radiat Res; 2005 Sep; 164(3):303-11. PubMed ID: 16137203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of ionizing radiation-induced DNA double-strand breaks by filter elution is affected by nuclear chromatin structure.
    Warters RL; Lyons BW
    Radiat Res; 1990 Dec; 124(3):309-16. PubMed ID: 2263730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggering of DNA strand breaks by 45 degrees C hyperthermia and its influence on the repair of gamma-radiation damage in human white blood cells.
    Mitchel RE; Birnboim HC
    Cancer Res; 1985 May; 45(5):2040-5. PubMed ID: 3986761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection.
    Rydberg B
    Radiat Res; 1996 Feb; 145(2):200-9. PubMed ID: 8606930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-induced DNA double-strand breaks produced in histone-depleted tumor cell nuclei measured using the neutral comet assay.
    Olive PL; Banáth JP
    Radiat Res; 1995 May; 142(2):144-52. PubMed ID: 7724728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rejoining kinetics of DNA single- and double-strand breaks in normal and DNA ligase-deficient cells after exposure to ultraviolet C and gamma radiation: an evaluation of ligating activities involved in different DNA repair processes.
    Nocentini S
    Radiat Res; 1999 Apr; 151(4):423-32. PubMed ID: 10190494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation-induced DNA base damage detected in individual aerobic and hypoxic cells with endonuclease III and formamidopyrimidine-glycosylase.
    Banáth JP; Wallace SS; Thompson J; Olive PL
    Radiat Res; 1999 May; 151(5):550-8. PubMed ID: 10319728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of DNA/chromatin organisation and scavenging capacity in USX- and proton- induced DNA damage.
    Alloni D; Ballarini F; Friedland W; Liotta M; Molinelli S; Ottolenghi A; Paretzke HG; Rossetti M
    Radiat Prot Dosimetry; 2006; 122(1-4):141-6. PubMed ID: 17284477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage from oxidants: influence of lesion complexity and chromatin organization.
    Olive PL; Johnston PJ
    Oncol Res; 1997; 9(6-7):287-94. PubMed ID: 9406234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.