These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 20207444)
1. The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa. Sulieman S; Schulze J J Plant Physiol; 2010 Jun; 167(9):683-92. PubMed ID: 20207444 [TBL] [Abstract][Full Text] [Related]
2. The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. Terpolilli JJ; O'Hara GW; Tiwari RP; Dilworth MJ; Howieson JG New Phytol; 2008; 179(1):62-66. PubMed ID: 18422896 [TBL] [Abstract][Full Text] [Related]
3. Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Sulieman S; Fischinger SA; Gresshoff PM; Schulze J Physiol Plant; 2010 Sep; 140(1):21-31. PubMed ID: 20444196 [TBL] [Abstract][Full Text] [Related]
4. Comparative Analysis of the Symbiotic Efficiency of Medicago truncatula and Medicago sativa under Phosphorus Deficiency. Sulieman S; Schulze J; Tran LS Int J Mol Sci; 2013 Mar; 14(3):5198-213. PubMed ID: 23459233 [TBL] [Abstract][Full Text] [Related]
5. Elevated CO2 concentration around alfalfa nodules increases N2 fixation. Fischinger SA; Hristozkova M; Mainassara ZA; Schulze J J Exp Bot; 2010; 61(1):121-30. PubMed ID: 19815686 [TBL] [Abstract][Full Text] [Related]
6. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Baier MC; Barsch A; Küster H; Hohnjec N Plant Physiol; 2007 Dec; 145(4):1600-18. PubMed ID: 17951459 [TBL] [Abstract][Full Text] [Related]
7. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. Sulieman S; Ha CV; Schulze J; Tran LS J Exp Bot; 2013 Jul; 64(10):2701-12. PubMed ID: 23682114 [TBL] [Abstract][Full Text] [Related]
8. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. López M; Herrera-Cervera JA; Iribarne C; Tejera NA; Lluch C J Plant Physiol; 2008 Apr; 165(6):641-50. PubMed ID: 17728011 [TBL] [Abstract][Full Text] [Related]
9. Phloem-derived γ-aminobutyric acid (GABA) is involved in upregulating nodule N2 fixation efficiency in the model legume Medicago truncatula. Sulieman S; Schulze J Plant Cell Environ; 2010 Dec; 33(12):2162-72. PubMed ID: 20716066 [TBL] [Abstract][Full Text] [Related]
10. The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N-stressed plants when symbiotic N2 fixation is the main N source for plant growth. Moreau D; Voisin AS; Salon C; Munier-Jolain N J Exp Bot; 2008; 59(13):3509-22. PubMed ID: 18703494 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions. Hidalgo-Castellanos J; Duque AS; Burgueño A; Herrera-Cervera JA; Fevereiro P; López-Gómez M J Plant Physiol; 2019 Oct; 241():153034. PubMed ID: 31493718 [TBL] [Abstract][Full Text] [Related]
13. N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. Sulieman S; Schulze J; Tran LS J Plant Physiol; 2014 Mar; 171(6):407-10. PubMed ID: 24594392 [TBL] [Abstract][Full Text] [Related]
14. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation. Goh CH; Nicotra AB; Mathesius U Plant Cell Environ; 2016 Apr; 39(4):883-96. PubMed ID: 26523414 [TBL] [Abstract][Full Text] [Related]
15. Nodule-Specific Cysteine-Rich Peptides Negatively Regulate Nitrogen-Fixing Symbiosis in a Strain-Specific Manner in Medicago truncatula. Wang Q; Liu J; Li H; Yang S; Körmöczi P; Kereszt A; Zhu H Mol Plant Microbe Interact; 2018 Feb; 31(2):240-248. PubMed ID: 28990486 [TBL] [Abstract][Full Text] [Related]
16. Alfalfa root nodule phosphoenolpyruvate carboxylase: characterization of the cDNA and expression in effective and plant-controlled ineffective nodules. Pathirana SM; Vance CP; Miller SS; Gantt JS Plant Mol Biol; 1992 Nov; 20(3):437-50. PubMed ID: 1421147 [TBL] [Abstract][Full Text] [Related]
17. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis. Larrainzar E; Gil-Quintana E; Seminario A; Arrese-Igor C; González EM Front Microbiol; 2014; 5():447. PubMed ID: 25221545 [TBL] [Abstract][Full Text] [Related]
18. Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2-fixing conditions. Gebril S; Seger M; Villanueva FM; Ortega JL; Bagga S; Sengupta-Gopalan C Planta; 2015 Oct; 242(4):1009-24. PubMed ID: 26055333 [TBL] [Abstract][Full Text] [Related]
19. Elevated CO(2) modifies N acquisition of Medicago truncatula by enhancing N fixation and reducing nitrate uptake from soil. Guo H; Sun Y; Li Y; Liu X; Ren Q; Zhu-Salzman K; Ge F PLoS One; 2013; 8(12):e81373. PubMed ID: 24339920 [TBL] [Abstract][Full Text] [Related]
20. Integrated analysis of zone-specific protein and metabolite profiles within nitrogen-fixing Medicago truncatula-Sinorhizobium medicae nodules. Ogden AJ; Gargouri M; Park J; Gang DR; Kahn ML PLoS One; 2017; 12(7):e0180894. PubMed ID: 28700717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]