These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 20207531)

  • 21. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.
    Grosso M; Motta A; Rigamonti L
    Waste Manag; 2010 Jul; 30(7):1238-43. PubMed ID: 20347289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.
    Tabata T
    Waste Manag Res; 2013 Nov; 31(11):1110-7. PubMed ID: 24025369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A sustainability analysis of an incineration project in Serbia.
    Mikic M; Naunovic Z
    Waste Manag Res; 2013 Nov; 31(11):1102-9. PubMed ID: 23690538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.
    Park S; Choi JH; Park J
    Waste Manag; 2011 Aug; 31(8):1765-71. PubMed ID: 21478007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of energy recovery and CO2 reduction potential in Japan through integrated waste and utility management.
    Horio M; Shigeto S; Shiga M
    Waste Manag; 2009 Jul; 29(7):2195-202. PubMed ID: 19272763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun City.
    Cheng H; Zhang Y; Meng A; Li Q
    Environ Sci Technol; 2007 Nov; 41(21):7509-15. PubMed ID: 18044534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.
    de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE
    Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of municipal solid waste management in Berlin and Singapore.
    Zhang D; Keat TS; Gersberg RM
    Waste Manag; 2010 May; 30(5):921-33. PubMed ID: 20022478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.
    Yi S; Yoo KY; Hanaki K
    Waste Manag; 2011 Mar; 31(3):595-602. PubMed ID: 20933381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tools for evaluation of impact associated with MSW incineration: LCA and integrated environmental monitoring system.
    Morselli L; Bartoli M; Bertacchini M; Brighetti A; Luzi J; Passarini F; Masoni P
    Waste Manag; 2005; 25(2):191-6. PubMed ID: 15737717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China.
    Chen D; Christensen TH
    Waste Manag Res; 2010 Jun; 28(6):508-19. PubMed ID: 20375128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.
    Shao LM; Ma ZH; Zhang H; Zhang DQ; He PJ
    Waste Manag; 2010 Jul; 30(7):1165-70. PubMed ID: 20106649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modelling.
    Tavares G; Zsigraiova Z; Semiao V; Carvalho MG
    Waste Manag; 2009 Mar; 29(3):1176-85. PubMed ID: 18835768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing Waste-to-Energy technologies by applying energy system analysis.
    Münster M; Lund H
    Waste Manag; 2010 Jul; 30(7):1251-63. PubMed ID: 19700298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.
    Lin H; Ma X
    Waste Manag; 2012 Mar; 32(3):561-7. PubMed ID: 22119515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.
    Inglezakis VJ; Rojas-Solórzano L; Kim J; Aitbekova A; Ismailova A
    Waste Manag Res; 2015 May; 33(5):486-94. PubMed ID: 25819927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An environmentally sustainable decision model for urban solid waste management.
    Costi P; Minciardi R; Robba M; Rovatti M; Sacile R
    Waste Manag; 2004; 24(3):277-95. PubMed ID: 15016417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.