BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20208005)

  • 1. Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase.
    Reijmers RM; Vondenhoff MF; Roozendaal R; Kuil A; Li JP; Spaargaren M; Pals ST; Mebius RE
    J Immunol; 2010 Apr; 184(7):3656-64. PubMed ID: 20208005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival.
    Reijmers RM; Groen RW; Kuil A; Weijer K; Kimberley FC; Medema JP; van Kuppevelt TH; Li JP; Spaargaren M; Pals ST
    Blood; 2011 Jun; 117(23):6162-71. PubMed ID: 21471524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucuronyl C5-epimerase an enzyme converting glucuronic acid to iduronic acid in heparan sulfate/heparin biosynthesis.
    Li JP
    Prog Mol Biol Transl Sci; 2010; 93():59-78. PubMed ID: 20807641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells.
    Feyerabend TB; Li JP; Lindahl U; Rodewald HR
    Nat Chem Biol; 2006 Apr; 2(4):195-6. PubMed ID: 16532012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organogenesis of lymphoid tissues.
    Mebius RE
    Nat Rev Immunol; 2003 Apr; 3(4):292-303. PubMed ID: 12669020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish.
    Ghiselli G; Farber SA
    BMC Dev Biol; 2005 Sep; 5():19. PubMed ID: 16156897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphoid organogenesis in brief.
    Vondenhoff MF; Kraal G; Mebius RE
    Eur J Immunol; 2007 Nov; 37 Suppl 1():S46-52. PubMed ID: 17972344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered heparan sulfate structure in Glce(-/-) mice leads to increased Hedgehog signaling in endochondral bones.
    Dierker T; Bachvarova V; Krause Y; Li JP; Kjellén L; Seidler DG; Vortkamp A
    Matrix Biol; 2016 Jan; 49():82-92. PubMed ID: 26116392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NDST1-dependent heparan sulfate regulates BMP signaling and internalization in lung development.
    Hu Z; Wang C; Xiao Y; Sheng N; Chen Y; Xu Y; Zhang L; Mo W; Jing N; Hu G
    J Cell Sci; 2009 Apr; 122(Pt 8):1145-54. PubMed ID: 19299468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tinkering with heparan sulfate sulfation to steer development.
    Gorsi B; Stringer SE
    Trends Cell Biol; 2007 Apr; 17(4):173-7. PubMed ID: 17320398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional study of D-glucuronyl C5-epimerase.
    Qin Y; Ke J; Gu X; Fang J; Wang W; Cong Q; Li J; Tan J; Brunzelle JS; Zhang C; Jiang Y; Melcher K; Li JP; Xu HE; Ding K
    J Biol Chem; 2015 Feb; 290(8):4620-4630. PubMed ID: 25568314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation.
    Fisher MC; Li Y; Seghatoleslami MR; Dealy CN; Kosher RA
    Matrix Biol; 2006 Jan; 25(1):27-39. PubMed ID: 16226436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis.
    Stachtea XN; Tykesson E; van Kuppevelt TH; Feinstein R; Malmström A; Reijmers RM; Maccarana M
    PLoS One; 2015; 10(10):e0140279. PubMed ID: 26488883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles for lymphotoxin-alpha and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue.
    Körner H; Cook M; Riminton DS; Lemckert FA; Hoek RM; Ledermann B; Köntgen F; Fazekas de St Groth B; Sedgwick JD
    Eur J Immunol; 1997 Oct; 27(10):2600-9. PubMed ID: 9368616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.
    Lamanna WC; Kalus I; Padva M; Baldwin RJ; Merry CL; Dierks T
    J Biotechnol; 2007 Apr; 129(2):290-307. PubMed ID: 17337080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of heparan sulphate proteoglycans in angiogenesis.
    Stringer SE
    Biochem Soc Trans; 2006 Jun; 34(Pt 3):451-3. PubMed ID: 16709184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human D-glucuronyl C5-epimerase gene is transcriptionally activated through the beta-catenin-TCF4 pathway.
    Ghiselli G; Agrawal A
    Biochem J; 2005 Sep; 390(Pt 2):493-9. PubMed ID: 15853773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells.
    Eberl G; Marmon S; Sunshine MJ; Rennert PD; Choi Y; Littman DR
    Nat Immunol; 2004 Jan; 5(1):64-73. PubMed ID: 14691482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases.
    Cadwallader AB; Yost HJ
    Dev Dyn; 2007 Feb; 236(2):581-6. PubMed ID: 17195182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer.
    Joyce JA; Freeman C; Meyer-Morse N; Parish CR; Hanahan D
    Oncogene; 2005 Jun; 24(25):4037-51. PubMed ID: 15806157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.