These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20208030)

  • 1. Raman spectroscopy-compatible inactivation method for pathogenic endospores.
    Stöckel S; Schumacher W; Meisel S; Elschner M; Rösch P; Popp J
    Appl Environ Microbiol; 2010 May; 76(9):2895-907. PubMed ID: 20208030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches.
    Stöckel S; Meisel S; Elschner M; Rösch P; Popp J
    Anal Chem; 2012 Nov; 84(22):9873-80. PubMed ID: 23098322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopic detection of anthrax endospores in powder samples.
    Stöckel S; Meisel S; Elschner M; Rösch P; Popp J
    Angew Chem Int Ed Engl; 2012 May; 51(22):5339-42. PubMed ID: 22505355
    [No Abstract]   [Full Text] [Related]  

  • 4. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores.
    Lasch P; Nattermann H; Erhard M; Stämmler M; Grunow R; Bannert N; Appel B; Naumann D
    Anal Chem; 2008 Mar; 80(6):2026-34. PubMed ID: 18290666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy.
    He L; D Deen B; Pagel AH; Diez-Gonzalez F; Labuza TP
    Analyst; 2013 Mar; 138(6):1657-9. PubMed ID: 23386216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis.
    Guicheteau J; Argue L; Emge D; Hyre A; Jacobson M; Christesen S
    Appl Spectrosc; 2008 Mar; 62(3):267-72. PubMed ID: 18339232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-shot detection of bacterial endospores via coherent Raman spectroscopy.
    Pestov D; Wang X; Ariunbold GO; Murawski RK; Sautenkov VA; Dogariu A; Sokolov AV; Scully MO
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):422-7. PubMed ID: 18184801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-inactivation of Bacillus endospores: inter-specific variability of inactivation efficiency.
    da Silva RN; Tomé AC; Tomé JP; Neves MG; Faustino MA; Cavaleiro JA; Oliveira A; Almeida A; Cunha Â
    Microbiol Immunol; 2012 Oct; 56(10):692-9. PubMed ID: 22823121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective detection of 1000 B. anthracis spores within 15 minutes using a peptide functionalized SERS assay.
    Farquharson S; Shende C; Smith W; Huang H; Inscore F; Sengupta A; Sperry J; Sickler T; Prugh A; Guicheteau J
    Analyst; 2014 Dec; 139(24):6366-70. PubMed ID: 25263740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopic study of bacterial endospores.
    De Gelder J; Scheldeman P; Leus K; Heyndrickx M; Vandenabeele P; Moens L; De Vos P
    Anal Bioanal Chem; 2007 Dec; 389(7-8):2143-51. PubMed ID: 17962923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forensic differentiation of Bacillus cereus spores grown using different culture media using Raman spectroscopy.
    Dettman JR; Goss JM; Ehrhardt CJ; Scott KA; Bannan JD; Robertson JM
    Anal Bioanal Chem; 2015 Jun; 407(16):4757-66. PubMed ID: 25893804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.
    Pestov D; Murawski RK; Ariunbold GO; Wang X; Zhi M; Sokolov AV; Sautenkov VA; Rostovtsev YV; Dogariu A; Huang Y; Scully MO
    Science; 2007 Apr; 316(5822):265-8. PubMed ID: 17431177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light.
    Nelson WH; Dasari R; Feld M; Sperry JF
    Appl Spectrosc; 2004 Dec; 58(12):1408-12. PubMed ID: 15606952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting anthrax in the mail by coherent Raman microspectroscopy.
    Arora R; Petrov GI; Yakovlev VV; Scully MO
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1151-3. PubMed ID: 22215594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable, quantitative detection of Bacillus bacterial spores using surface-enhanced Raman scattering.
    Cowcher DP; Xu Y; Goodacre R
    Anal Chem; 2013 Mar; 85(6):3297-302. PubMed ID: 23409961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formaldehyde gas inactivation of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials.
    Rogers JV; Choi YW; Richter WR; Rudnicki DC; Joseph DW; Sabourin CL; Taylor ML; Chang JC
    J Appl Microbiol; 2007 Oct; 103(4):1104-12. PubMed ID: 17897215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. American Chemical Society meeting. Fast, sensitive scan targets anthrax.
    Service RF
    Science; 2005 Apr; 308(5718):45. PubMed ID: 15802583
    [No Abstract]   [Full Text] [Related]  

  • 18. Rapid and reliable detection of bacterial endospores in environmental samples by diagnostic electron microscopy combined with X-ray microanalysis.
    Laue M; Fulda G
    J Microbiol Methods; 2013 Jul; 94(1):13-21. PubMed ID: 23603002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores.
    Petrov GI; Arora R; Yakovlev VV; Wang X; Sokolov AV; Scully MO
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7776-9. PubMed ID: 17483468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow electrochemical inactivation of waterborne bacterial endospores.
    Wei R; Tong H; Zhang J; Sun B; You S
    J Hazard Mater; 2023 Mar; 445():130505. PubMed ID: 36463735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.