BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20208438)

  • 1. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112.
    Hu ZC; Liu ZQ; Zheng YG; Shen YC
    J Microbiol Biotechnol; 2010 Feb; 20(2):340-5. PubMed ID: 20208438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor.
    Hu ZC; Zheng YG; Shen YC
    Bioresour Technol; 2011 Jul; 102(14):7177-82. PubMed ID: 21592784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy.
    Hu ZC; Zheng YG
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1152-60. PubMed ID: 21833510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation.
    Hu ZC; Liu ZQ; Xu JM; Zheng YG; Shen YC
    Prep Biochem Biotechnol; 2012; 42(1):15-28. PubMed ID: 22239705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone.
    Wei S; Song Q; Wei D
    Prep Biochem Biotechnol; 2007; 37(2):113-21. PubMed ID: 17454822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor.
    Hu ZC; Tian SY; Ruan LJ; Zheng YG
    Bioresour Technol; 2017 Jun; 233():144-149. PubMed ID: 28279907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans.
    Hekmat D; Bauer R; Fricke J
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):109-16. PubMed ID: 14598160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904.
    Dikshit PK; Moholkar VS
    Bioresour Technol; 2016 Sep; 216():1058-65. PubMed ID: 26873288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone.
    Wei S; Song Q; Wei D
    Prep Biochem Biotechnol; 2007; 37(1):67-76. PubMed ID: 17134984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans.
    Zhou X; Xu Y; Yu S
    Appl Biochem Biotechnol; 2016 Jan; 178(1):1-8. PubMed ID: 26378011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Yield Production of Dihydroxyacetone from Crude Glycerol in Fed-Batch Cultures of
    Górska K; Garncarek Z
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C; Degner U; Bringer-Meyer S; Herrmann U
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process.
    Bauer R; Katsikis N; Varga S; Hekmat D
    Bioprocess Biosyst Eng; 2005 Nov; 28(1):37-43. PubMed ID: 16044287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.
    Habe H; Fukuoka T; Morita T; Kitamoto D; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(7):1391-5. PubMed ID: 20622460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii.
    Liu YP; Sun Y; Tan C; Li H; Zheng XJ; Jin KQ; Wang G
    Bioresour Technol; 2013 Aug; 142():384-9. PubMed ID: 23748086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR).
    Zhou X; Zhou X; Xu Y; Yu S
    Bioprocess Biosyst Eng; 2016 Aug; 39(8):1315-8. PubMed ID: 27021347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way.
    Lu L; Wei L; Zhu K; Wei D; Hua Q
    Bioresour Technol; 2012 Aug; 117():317-24. PubMed ID: 22617040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydroxyacetone production from glycerol using Gluconobacter oxydans: Study of medium composition and operational conditions in shaken flasks.
    de la Morena S; Acedos MG; Santos VE; García-Ochoa F
    Biotechnol Prog; 2019 Jul; 35(4):e2803. PubMed ID: 30840359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-cost biotransformation of glycerol to 1,3-dihydroxyacetone through Gluconobacter frateurii in medium with inorganic salts only.
    Poljungreed I; Boonyarattanakalin S
    Lett Appl Microbiol; 2018 Jul; 67(1):39-46. PubMed ID: 29574796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.