These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 20208519)
21. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Zhang Y; Xiong Y Cell Growth Differ; 2001 Apr; 12(4):175-86. PubMed ID: 11331246 [TBL] [Abstract][Full Text] [Related]
22. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Eischen CM; Roussel MF; Korsmeyer SJ; Cleveland JL Mol Cell Biol; 2001 Nov; 21(22):7653-62. PubMed ID: 11604501 [TBL] [Abstract][Full Text] [Related]
23. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells. Duan W; Gao L; Wu X; Zhang Y; Otterson GA; Villalona-Calero MA Exp Cell Res; 2006 Oct; 312(17):3370-8. PubMed ID: 16934800 [TBL] [Abstract][Full Text] [Related]
24. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Kuo ML; den Besten W; Bertwistle D; Roussel MF; Sherr CJ Genes Dev; 2004 Aug; 18(15):1862-74. PubMed ID: 15289458 [TBL] [Abstract][Full Text] [Related]
25. Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. Dai MS; Jin Y; Gallegos JR; Lu H Neoplasia; 2006 Aug; 8(8):630-44. PubMed ID: 16925946 [TBL] [Abstract][Full Text] [Related]
26. RABL6A, a novel RAB-like protein, controls centrosome amplification and chromosome instability in primary fibroblasts. Zhang X; Hagen J; Muniz VP; Smith T; Coombs GS; Eischen CM; Mackie DI; Roman DL; Van Rheeden R; Darbro B; Tompkins VS; Quelle DE PLoS One; 2013; 8(11):e80228. PubMed ID: 24282525 [TBL] [Abstract][Full Text] [Related]
27. Dissecting roles of ubiquitination in the p53 pathway. Shan J; Brooks C; Kon N; Li M; Gu W Ernst Schering Found Symp Proc; 2008; (1):127-36. PubMed ID: 19202598 [TBL] [Abstract][Full Text] [Related]
28. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Midgley CA; Desterro JM; Saville MK; Howard S; Sparks A; Hay RT; Lane DP Oncogene; 2000 May; 19(19):2312-23. PubMed ID: 10822382 [TBL] [Abstract][Full Text] [Related]
29. Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Li Z; Boone D; Hann SR Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18794-9. PubMed ID: 19033198 [TBL] [Abstract][Full Text] [Related]
30. Growth suppression by a p14(ARF) exon 1beta adenovirus in human tumor cell lines of varying p53 and Rb status. Saadatmandi N; Tyler T; Huang Y; Haghighi A; Frost G; Borgstrom P; Gjerset RA Cancer Gene Ther; 2002 Oct; 9(10):830-9. PubMed ID: 12224024 [TBL] [Abstract][Full Text] [Related]
31. GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF. Lee S; Cho YE; Kim SH; Kim YJ; Park JH Oncotarget; 2017 Mar; 8(10):16293-16302. PubMed ID: 27323397 [TBL] [Abstract][Full Text] [Related]
32. p53-Dependent and -independent functions of the Arf tumor suppressor. Sherr CJ; Bertwistle D; DEN Besten W; Kuo ML; Sugimoto M; Tago K; Williams RT; Zindy F; Roussel MF Cold Spring Harb Symp Quant Biol; 2005; 70():129-37. PubMed ID: 16869746 [TBL] [Abstract][Full Text] [Related]
33. Fuse binding protein antagonizes the transcription activity of tumor suppressor protein p53. Dixit U; Liu Z; Pandey AK; Kothari R; Pandey VN BMC Cancer; 2014 Dec; 14():925. PubMed ID: 25487856 [TBL] [Abstract][Full Text] [Related]
34. p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Ho JS; Ma W; Mao DY; Benchimol S Mol Cell Biol; 2005 Sep; 25(17):7423-31. PubMed ID: 16107691 [TBL] [Abstract][Full Text] [Related]
35. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Valsesia-Wittmann S; Magdeleine M; Dupasquier S; Garin E; Jallas AC; Combaret V; Krause A; Leissner P; Puisieux A Cancer Cell; 2004 Dec; 6(6):625-30. PubMed ID: 15607966 [TBL] [Abstract][Full Text] [Related]
36. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. Matsuzawa S; Takayama S; Froesch BA; Zapata JM; Reed JC EMBO J; 1998 May; 17(10):2736-47. PubMed ID: 9582267 [TBL] [Abstract][Full Text] [Related]
37. ARF-dependent regulation of ATM and p53 associated KZNF (Apak) protein activity in response to oncogenic stress. Wang S; Tian C; Xing G; Gao M; Jiao W; Xiao T; Yin Y; He F; Zhang L FEBS Lett; 2010 Sep; 584(18):3909-15. PubMed ID: 20713054 [TBL] [Abstract][Full Text] [Related]
38. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Colombo E; Bonetti P; Lazzerini Denchi E; Martinelli P; Zamponi R; Marine JC; Helin K; Falini B; Pelicci PG Mol Cell Biol; 2005 Oct; 25(20):8874-86. PubMed ID: 16199867 [TBL] [Abstract][Full Text] [Related]
39. The ubiquitin ligase COP1 is a critical negative regulator of p53. Dornan D; Wertz I; Shimizu H; Arnott D; Frantz GD; Dowd P; O'Rourke K; Koeppen H; Dixit VM Nature; 2004 May; 429(6987):86-92. PubMed ID: 15103385 [TBL] [Abstract][Full Text] [Related]
40. Novel ARF/p53-independent senescence pathways in cancer repression. Chan CH; Gao Y; Moten A; Lin HK J Mol Med (Berl); 2011 Sep; 89(9):857-67. PubMed ID: 21594579 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]