These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20208525)

  • 1. Chemically driven carbon-nanotube-guided thermopower waves.
    Choi W; Hong S; Abrahamson JT; Han JH; Song C; Nair N; Baik S; Strano MS
    Nat Mater; 2010 May; 9(5):423-9. PubMed ID: 20208525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources.
    Abrahamson JT; Choi W; Schonenbach NS; Park J; Han JH; Walsh MP; Kalantar-Zadeh K; Strano MS
    ACS Nano; 2011 Jan; 5(1):367-75. PubMed ID: 21182252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess thermopower and the theory of thermopower waves.
    Abrahamson JT; Sempere B; Walsh MP; Forman JM; Sen F; Sen S; Mahajan SG; Paulus GL; Wang QH; Choi W; Strano MS
    ACS Nano; 2013 Aug; 7(8):6533-44. PubMed ID: 23889080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chemical fuel composition on energy generation from thermopower waves.
    Yeo T; Hwang H; Jeong DC; Lee KY; Hong J; Song C; Choi W
    Nanotechnology; 2014 Nov; 25(44):445403. PubMed ID: 25319506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves.
    Yeo T; Hwang H; Cho Y; Shin D; Choi W
    Nanotechnology; 2015 Jul; 26(30):305402. PubMed ID: 26159116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the effect of the structure of large-area carbon nanotube/fuel composites on energy generation from thermopower waves.
    Hwang H; Yeo T; Um JE; Lee KY; Kim HS; Han JH; Kim WJ; Choi W
    Nanoscale Res Lett; 2014; 9(1):536. PubMed ID: 25285059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the increase in anisotropic reaction rates in metal nanoparticle oxidation using carbon nanotubes as thermal conduits.
    Abrahamson JT; Nair N; Strano MS
    Nanotechnology; 2008 May; 19(19):195701. PubMed ID: 21825719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO based thermopower wave sources.
    Walia S; Weber R; Balendhran S; Yao D; Abrahamson JT; Zhuiykov S; Bhaskaran M; Sriram S; Strano MS; Kalantar-zadeh K
    Chem Commun (Camb); 2012 Aug; 48(60):7462-4. PubMed ID: 22728449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi
    Singh S; Mun H; Lee S; Kim SW; Baik S
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28640460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermopower Wave-Driven Hybrid Supercapacitor Charging System.
    Shin D; Hwang H; Yeo T; Seo B; Choi W
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31042-31050. PubMed ID: 27797172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.
    Lee KY; Hwang H; Choi W
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15575-82. PubMed ID: 25133980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.
    Yeo T; Hwang H; Shin D; Seo B; Choi W
    Nanotechnology; 2017 Feb; 28(6):065403. PubMed ID: 28052049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs.
    Chang CM; Liu YL
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2204-8. PubMed ID: 21644521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles.
    Lee KY; Hwang H; Shin D; Choi W
    Nanoscale; 2015 Oct; 7(40):17071-8. PubMed ID: 26419765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits.
    Wang H; Yi SI; Pu X; Yu C
    ACS Appl Mater Interfaces; 2015 May; 7(18):9589-97. PubMed ID: 25894982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film.
    Wang M; Chen H; Lin W; Li Z; Li Q; Chen M; Meng F; Xing Y; Yao Y; Wong CP; Li Q
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):539-44. PubMed ID: 24341574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper.
    Yang K; He J; Puneet P; Su Z; Skove MJ; Gaillard J; Tritt TM; Rao AM
    J Phys Condens Matter; 2010 Aug; 22(33):334215. PubMed ID: 21386505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.