BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20208582)

  • 41. Thermostable polynucleotide phosphorylases from Bacillus stearothermophilus and Thermus aquaticus.
    Wood JN; Hutchinson DW
    Nucleic Acids Res; 1976 Jan; 3(1):219-29. PubMed ID: 1250699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural analysis of two enzymes catalysing reverse metabolic reactions implies common ancestry.
    Mayans O; Ivens A; Nissen LJ; Kirschner K; Wilmanns M
    EMBO J; 2002 Jul; 21(13):3245-54. PubMed ID: 12093726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioprocess development to produce a hyperthermostable S-methyl-5'-thioadenosine phosphorylase in Escherichia coli.
    Schollmeyer J; Waldburger S; Njo K; Yehia H; Kurreck A; Neubauer P; Riedel SL
    Biotechnol Bioeng; 2023 Nov; 120(11):3322-3334. PubMed ID: 37574915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A second purine nucleoside phosphorylase in Escherichia coli K-12. II. Properties of xanthosine phosphorylase and its induction by xanthosine.
    Hammer-Jespersen K; Buxton RS; Hansen TD
    Mol Gen Genet; 1980; 179(2):341-8. PubMed ID: 7007809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of Fluorine-Containing Analogues of Purine Deoxynucleosides: Optimization of Enzymatic Transglycosylation Conditions.
    Drenichev MS; Dorinova EO; Varizhuk IV; Oslovsky VE; Varga MA; Esipov RS; Lykoshin DD; Alexeev CS
    Dokl Biochem Biophys; 2022 Apr; 503(1):52-58. PubMed ID: 35538278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from
    Kaspar F; Wolff DS; Neubauer P; Kurreck A; Arcus VL
    Biochemistry; 2021 May; 60(20):1573-1577. PubMed ID: 33955225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermus thermophilus nucleoside phosphorylases active in the synthesis of nucleoside analogues.
    Almendros M; Berenguer J; Sinisterra JV
    Appl Environ Microbiol; 2012 May; 78(9):3128-35. PubMed ID: 22344645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Purine and pyrimidine nucleoside phosphorylases - remarkable enzymes still not fully understood].
    Bzowska A
    Postepy Biochem; 2015; 61(3):260-73. PubMed ID: 26677573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate spectra of nucleoside phosphorylases and their potential in the production of pharmaceutically active compounds.
    Yehia H; Kamel S; Paulick K; Wagner A; Neubauer P
    Curr Pharm Des; 2017 Oct; ():. PubMed ID: 29076414
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Does single-amino-acid replacement work in favor of or against improvement of the thermostability of immobilized enzyme?
    Koizumi J; Zhang M; Imanaka T; Aiba S
    Appl Environ Microbiol; 1990 Nov; 56(11):3612-4. PubMed ID: 2176451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases.
    Krenitsky TA; Koszalka GW; Tuttle JV
    Biochemistry; 1981 Jun; 20(12):3615-21. PubMed ID: 6789872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilization and stabilization of recombinant multimeric uridine and purine nucleoside phosphorylases from Bacillus subtilis.
    Rocchietti S; Ubiali D; Terreni M; Albertini AM; Fernández-Lafuente R; Guisán JM; Pregnolato M
    Biomacromolecules; 2004; 5(6):2195-200. PubMed ID: 15530033
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.
    Iqbal I; Aftab MN; Afzal M; Ur-Rehman A; Aftab S; Zafar A; Ud-Din Z; Khuharo AR; Iqbal J; Ul-Haq I
    J Basic Microbiol; 2015 Feb; 55(2):160-71. PubMed ID: 25224381
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of an atypical, thermostable, organic solvent- and acid-tolerant 2'-deoxyribosyltransferase from Chroococcidiopsis thermalis.
    Del Arco J; Sánchez-Murcia PA; Mancheño JM; Gago F; Fernández-Lucas J
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6947-6957. PubMed ID: 29872887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways.
    Fateev IV; Kostromina MA; Abramchik YA; Eletskaya BZ; Mikheeva OO; Lukoshin DD; Zayats EA; Berzina MY; Dorofeeva EV; Paramonov AS; Kayushin AL; Konstantinova ID; Esipov RS
    Biomolecules; 2021 Apr; 11(4):. PubMed ID: 33923608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formycins A and B and some analogues: selective inhibitors of bacterial (Escherichia coli) purine nucleoside phosphorylase.
    Bzowska A; Kulikowska E; Shugar D
    Biochim Biophys Acta; 1992 Apr; 1120(3):239-47. PubMed ID: 1576149
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Peculiar Case of the Hyper-thermostable Pyrimidine Nucleoside Phosphorylase from Thermus thermophilus*.
    Kaspar F; Neubauer P; Kurreck A
    Chembiochem; 2021 Apr; 22(8):1385-1390. PubMed ID: 33258231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The crystal structure of pyrimidine nucleoside phosphorylase in a closed conformation.
    Pugmire MJ; Ealick SE
    Structure; 1998 Nov; 6(11):1467-79. PubMed ID: 9817849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immobilization of recombinant thermostable beta-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk.
    Chen W; Chen H; Xia Y; Yang J; Zhao J; Tian F; Zhang HP; Zhang H
    J Dairy Sci; 2009 Feb; 92(2):491-8. PubMed ID: 19164659
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biotransformation of 2,6-diaminopurine nucleosides by immobilized Geobacillus stearothermophilus.
    De Benedetti EC; Rivero CW; Britos CN; Lozano ME; Trelles JA
    Biotechnol Prog; 2012; 28(5):1251-6. PubMed ID: 22837142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.