These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20208611)

  • 1. Laser radar for remote detection of oil spills.
    Sato T; Suzuki Y; Kashiwagi H; Nanjo M; Kakui Y
    Appl Opt; 1978 Dec; 17(23):3798-803. PubMed ID: 20208611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP.
    Ferraro G; Baschek B; de Montpellier G; Njoten O; Perkovic M; Vespe M
    Mar Pollut Bull; 2010 Jan; 60(1):91-102. PubMed ID: 19775709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters.
    Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP
    Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building blocks for a two-frequency laser lidar-radar: a preliminary study.
    Morvan L; Lai ND; Dolfi D; Huignard JP; Brunel M; Bretenaker F; Le Floch A
    Appl Opt; 2002 Sep; 41(27):5702-12. PubMed ID: 12269571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.
    Fraczek M; Behrendt A; Schmitt N
    Appl Opt; 2012 Jan; 51(2):148-66. PubMed ID: 22270512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved laser fluorosensors: a laboratory study of their potential in the remote characterization of oil.
    Rayner DM; Szabo AG
    Appl Opt; 1978 May; 17(10):1624-30. PubMed ID: 20198034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of biophysical properties of skin measured by using non-invasive techniques in the KM mice following 595 nm pulsed dye, 1064 nm Q-Switched Nd:YAG and 1320 nm Nd:YAG laser non-ablative rejuvenation.
    Dang Y; Ren Q; Li W; Yang Q; Zhang J
    Skin Res Technol; 2006 May; 12(2):119-25. PubMed ID: 16626386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman lidar for remote sensing of oil in water.
    Somekawa T; Izawa J; Fujita M; Kawanaka J; Kuze H
    Appl Opt; 2021 Sep; 60(25):7772-7774. PubMed ID: 34613249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.
    Chen T; Madey JM; Price FM; Sharma SK; Lienert B
    Appl Spectrosc; 2007 Jun; 61(6):624-9. PubMed ID: 17650374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field performance of a laser fluorosensor for the detection of oil spills.
    O'Neil RA; Buja-Bijunas L; Rayner DM
    Appl Opt; 1980 Mar; 19(6):863-70. PubMed ID: 20220949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Detection of oil spills on water by differential polarization FTIR spectrometry].
    Yuan YM; Xiong W; Fang YH; Lan TG; Li DC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2129-32. PubMed ID: 20939322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An analysis of quenching characteristics of DOM in water by laser induced fluorescence].
    Zhao NJ; Liu WQ; Zhang YJ; Cui ZC; Liu JG; Li HB; Wei QN; Yang LS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1499-502. PubMed ID: 17058956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy.
    Östmark H; Nordberg M; Carlsson TE
    Appl Opt; 2011 Oct; 50(28):5592-9. PubMed ID: 22016229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAR observation and model tracking of an oil spill event in coastal waters.
    Cheng Y; Li X; Xu Q; Garcia-Pineda O; Andersen OB; Pichel WG
    Mar Pollut Bull; 2011 Feb; 62(2):350-63. PubMed ID: 21067783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A multichannel laser Raman spectral detecting system].
    Yang X; Wang Y; Huang Y; Chen J
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Feb; 19(1):120-2. PubMed ID: 15818940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders.
    Gallego AJ; Gil P; Pertusa A; Fisher RB
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29509720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil film thickness measurement using airborne laser-induced water Raman backscatter.
    Hoge FE; Swift RN
    Appl Opt; 1980 Oct; 19(19):3269-81. PubMed ID: 20234606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed remote Raman system for daytime measurements of mineral spectra.
    Misra AK; Sharma SK; Chio CH; Lucey PG; Lienert B
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2281-7. PubMed ID: 16029850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.