These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 20208808)

  • 41. Prism-pair dispersive delay lines in optical pulse compression.
    Kafka JD; Baer T
    Opt Lett; 1987 Jun; 12(6):401-3. PubMed ID: 19741745
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulation of grating compressor misalignment tolerances and mitigation strategies for chirped-pulse-amplification systems of varying bandwidths and beam sizes.
    Webb B; Guardalben MJ; Dorrer C; Bucht S; Bromage J
    Appl Opt; 2019 Jan; 58(2):234-243. PubMed ID: 30645299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.
    Davis AOC; Saulnier PM; KarpiƄski M; Smith BJ
    Opt Express; 2017 May; 25(11):12804-12811. PubMed ID: 28786633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coumarin 120 laser pulses close to the Fourier transform limit from a simplified resonant cavity.
    Lin QB; Zhang FG
    Appl Opt; 1987 Jul; 26(13):2572-4. PubMed ID: 20489922
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Grating configurations to compress free-electron laser pulses.
    Poletto L; Frassetto F
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):52-58. PubMed ID: 29271751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings.
    Li G; Zhou C; Dai E
    J Opt Soc Am A Opt Image Sci Vis; 2005 Apr; 22(4):767-72. PubMed ID: 15839285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifiers.
    Agrawal GP; Olsson NA
    Opt Lett; 1989 May; 14(10):500-2. PubMed ID: 19749965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Propagation of optical pulses with spatial and temporal dependence.
    Marathay AS
    Appl Opt; 1994 May; 33(14):3139-45. PubMed ID: 20885679
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High dispersive mirrors for erbium-doped fiber chirped pulse amplification system.
    Chen Y; Wang Y; Wang L; Zhu M; Qi H; Shao J; Huang X; Yang S; Li C; Zhou K; Zhu Q
    Opt Express; 2016 Aug; 24(17):19835-40. PubMed ID: 27557259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of material dispersion using a nanosecond optical pulse radiator.
    Horiguchi M; Ohmori Y; Miya T
    Appl Opt; 1979 Jul; 18(13):2223-8. PubMed ID: 20212637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry.
    Saperstein RE; Alic N; Zamek S; Ikeda K; Slutsky B; Fainman Y
    Opt Express; 2007 Nov; 15(23):15464-79. PubMed ID: 19550832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Limits of chirped pulse compression with an unchirped Bragg grating filter.
    Ouellette F
    Appl Opt; 1990 Nov; 29(32):4826-9. PubMed ID: 20577473
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Doppler shift generated by a moving diffraction grating under incidence by polychromatic diffuse light.
    Dossou KB
    Appl Opt; 2016 May; 55(15):3915-24. PubMed ID: 27411115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression.
    Li M; Sun S; Malacarne A; LaRochelle S; Yao J; Zhu N; Azana J
    Sci Bull (Beijing); 2017 Feb; 62(4):242-248. PubMed ID: 36659352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relativistic single-cycled short-wavelength laser pulse compressed from a chirped pulse induced by laser-foil interaction.
    Ji LL; Shen BF; Li DX; Wang D; Leng YX; Zhang XM; Wen M; Wang WP; Xu JC; Yu YH
    Phys Rev Lett; 2010 Jul; 105(2):025001. PubMed ID: 20867711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis and design of nonlinear fiber Bragg gratings and their application for optical compression of reflected pulses.
    Rosenthal A; Horowitz M
    Opt Lett; 2006 May; 31(9):1334-6. PubMed ID: 16642103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transit time of optical pulses propagating through a finite length medium.
    Bloemer M; Myneni K; Centini M; Scalora M; D'Aguanno G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056615. PubMed ID: 12059739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Littrow angle based autocollimation method for precision online monitoring three-dimensional angular drifts of chirped-pulse compression-gratings.
    Li Z; Wang T; Xu G; Li D; Chen L; Dai Y
    Rev Sci Instrum; 2013 Jun; 84(6):063109. PubMed ID: 23822335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pulse compression of an FM chirped CO(2) laser.
    Halmos MJ; Henderson DM; Duvall Iii RL
    Appl Opt; 1989 Sep; 28(17):3595-602. PubMed ID: 20555743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Compression of optical pulses spectrally broadened by self-phase modulation with a fiber bragg grating in transmission.
    Eggleton BJ; Lenz G; Slusher RE; Litchinitser NM
    Appl Opt; 1998 Oct; 37(30):7055-61. PubMed ID: 18301524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.