BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 20208905)

  • 21. Fourier representation of the energy distribution of an electromagnetic field scattered by spherical particles.
    Eiden R
    Appl Opt; 1975 Oct; 14(10):2486-91. PubMed ID: 20155046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New calculation of surface wave contributions associated with mie backscattering.
    Inada H
    Appl Opt; 1973 Jul; 12(7):1516-23. PubMed ID: 20125556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles.
    Bi L; Yang P; Kattawar GW
    Appl Opt; 2010 Aug; 49(24):4641-6. PubMed ID: 20733636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic oscillatory powers, cross sections, and energy efficiencies in coherent optical heterodyning.
    Mitri FG
    J Opt Soc Am A Opt Image Sci Vis; 2020 Oct; 37(10):1630-1638. PubMed ID: 33104610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colors of transparent submicron suspensions on approaching the Rayleigh regime.
    Magatti D; Ferri F; Ragazzi P; Pigazzini MC; Averchi A; Di Trapani P
    Appl Opt; 2012 Apr; 51(12):2183-91. PubMed ID: 22534932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonspherical extinction and absorption efficiencies.
    Welch RM; Cox SK
    Appl Opt; 1978 Oct; 17(19):3159-68. PubMed ID: 20203941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finely stratified cylinder model for radially inhomogeneous cylinders normally irradiated by electromagnetic plane waves.
    Kai L; D'lessio A
    Appl Opt; 1995 Aug; 34(24):5520-30. PubMed ID: 21060374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles.
    Mackowski DW
    Appl Opt; 1995 Jun; 34(18):3535-45. PubMed ID: 21052169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Johnsen S; Craig Fowler W; Costello MJ
    Exp Eye Res; 2004 Oct; 79(4):563-76. PubMed ID: 15381040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The phase shift of light scattering at sub-wavelength dielectric structures.
    Yu Y; Cao L
    Opt Express; 2013 Mar; 21(5):5957-67. PubMed ID: 23482164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations.
    Graaff R; Aarnoudse JG; Zijp JR; Sloot PM; de Mul FF; Greve J; Koelink MH
    Appl Opt; 1992 Apr; 31(10):1370-6. PubMed ID: 20720767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light scattering and absorption by randomly-oriented cylinders: dependence on aspect ratio for refractive indices applicable for marine particles.
    Gordon HR
    Opt Express; 2011 Feb; 19(5):4673-91. PubMed ID: 21369299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response of acoustic imaging systems using convergent leaky waves to cylindrical flaws.
    Gunalp N; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):507-16. PubMed ID: 18290227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light scattering by a spheroidal particle.
    Asano S; Yamamoto G
    Appl Opt; 1975 Jan; 14(1):29-49. PubMed ID: 20134829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams.
    Ambrosio LA; Hernández-Figueroa HE
    Appl Opt; 2011 Aug; 50(22):4489-98. PubMed ID: 21833125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scattering by two rayleigh-debye spheres.
    Olaof GO
    Appl Opt; 1970 Feb; 9(2):429-37. PubMed ID: 20076206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase matrix and cross sections for single scattering by circular cylinders: a comparison of ray optics and wave theory.
    Takano Y; Tanaka M
    Appl Opt; 1980 Aug; 19(16):2781-800. PubMed ID: 20234508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raman and fluorescent scattering by molecules embedded in dielectric cylinders.
    Chew H; Cooke DD; Kerker M
    Appl Opt; 1980 Jan; 19(1):44-52. PubMed ID: 20216792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light scattering properties of spheroidal particles.
    Asano S
    Appl Opt; 1979 Mar; 18(5):712-23. PubMed ID: 20208804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deviations from plane-wave Mie scattering and precise retrieval of refractive index for a single spherical particle in an optical cavity.
    Mason BJ; Walker JS; Reid JP; Orr-Ewing AJ
    J Phys Chem A; 2014 Mar; 118(11):2083-8. PubMed ID: 24580563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.