These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 20208916)
1. Fabrication of small nonsymmetrical aspheric surfaces. Jones RA Appl Opt; 1979 Apr; 18(8):1244-6. PubMed ID: 20208916 [TBL] [Abstract][Full Text] [Related]
2. Fabrication using the computer controlled polisher. Jones RA Appl Opt; 1978 Jun; 17(12):1889-92. PubMed ID: 20198089 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of aspherics using a mathematical model for material removal. Wagner RE; Shannon RR Appl Opt; 1974 Jul; 13(7):1683-9. PubMed ID: 20134531 [TBL] [Abstract][Full Text] [Related]
4. Computer-controlled grinding of optical surfaces. Jones RA Appl Opt; 1982 Mar; 21(5):874-7. PubMed ID: 20372554 [TBL] [Abstract][Full Text] [Related]
5. Optimization of computer controlled polishing. Jones RA Appl Opt; 1977 Jan; 16(1):218-24. PubMed ID: 20168455 [TBL] [Abstract][Full Text] [Related]
6. A Method of Restraining the Adverse Effects of Grinding Marks on Small Aperture Aspheric Mirrors. Bao J; Peng X; Hu H; Lai T Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144044 [TBL] [Abstract][Full Text] [Related]
7. Time-varying tool influence function model of bonnet polishing for aspheric surfaces. Zhong B; Wang C; Chen X; Wang J Appl Opt; 2019 Feb; 58(4):1101-1109. PubMed ID: 30874159 [TBL] [Abstract][Full Text] [Related]
8. Corrective finishing of a micro-aspheric mold made of tungsten carbide to 50 nm accuracy. Guo J Appl Opt; 2015 Jun; 54(18):5764-70. PubMed ID: 26193027 [TBL] [Abstract][Full Text] [Related]
9. Ultrasmooth surface polishing based on the hydrodynamic effect. Peng W; Guan C; Li S Appl Opt; 2013 Sep; 52(25):6411-6. PubMed ID: 24085104 [TBL] [Abstract][Full Text] [Related]
10. Material removal mode affected by the particle size in fluid jet polishing. Peng W; Guan C; Li S Appl Opt; 2013 Nov; 52(33):7927-33. PubMed ID: 24513743 [TBL] [Abstract][Full Text] [Related]
11. Study on Material Removal Model by Reciprocating Magnetorheological Polishing. Wang R; Xiu S; Sun C; Li S; Kong X Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917829 [TBL] [Abstract][Full Text] [Related]
12. Air gauge measurement and driven lap polishing in the production of aspheric surfaces. Random G; Wallerstein EP Appl Opt; 1966 May; 5(5):737-40. PubMed ID: 20048939 [TBL] [Abstract][Full Text] [Related]
13. Equivalent thin-plate method for stressed mirror polishing of an off-axis aspheric silicon carbide lightweight mirror. Yi L; Zhang X; Hu H; Zhang Z; Zeng X; Luo X; Xue D; Zhang G Opt Express; 2020 Nov; 28(24):36413-36431. PubMed ID: 33379735 [TBL] [Abstract][Full Text] [Related]
14. Optimal strategy for fabrication of large aperture aspheric surfaces. Feng Y; Cheng H; Wang T; Dong Z; Tam HY Appl Opt; 2014 Jan; 53(1):147-55. PubMed ID: 24514001 [TBL] [Abstract][Full Text] [Related]
15. Effect of workpiece curvature on the tool influence function during hemispherical sub-aperture tool glass polishing. Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B; Gregory M; Hordin T Appl Opt; 2021 Feb; 60(4):1041-1050. PubMed ID: 33690410 [TBL] [Abstract][Full Text] [Related]
17. Novel orthogonal velocity polishing tool and its material removal characteristics from CVD SiC mirror surfaces. Seo H; Han JY; Kim SW; Seong S; Yoon S; Lee K; Hong J; Lee H; Bok M Opt Express; 2016 May; 24(11):12349-66. PubMed ID: 27410150 [TBL] [Abstract][Full Text] [Related]
18. Developing on-machine 3D profile measurement for deterministic fabrication of aspheric mirrors. Dong Z; Cheng H; Ye X; Tam HY Appl Opt; 2014 Aug; 53(22):4997-5007. PubMed ID: 25090332 [TBL] [Abstract][Full Text] [Related]
19. Aspherical surface polishing with a ring polisher. Chen GH; Moore DT Appl Opt; 1979 Feb; 18(4):559-62. PubMed ID: 20208763 [TBL] [Abstract][Full Text] [Related]