These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20208933)

  • 21. Bringing the visible universe into focus with Robo-AO.
    Baranec C; Riddle R; Law NM; Ramaprakash AN; Tendulkar SP; Bui K; Burse MP; Chordia P; Das HK; Davis JT; Dekany RG; Kasliwal MM; Kulkarni SR; Morton TD; Ofek EO; Punnadi S
    J Vis Exp; 2013 Feb; (72):. PubMed ID: 23426078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep nulling of visible laser light.
    Serabyn E; Wallace JK; Hardy GJ; Schmidtlin EG; Nguyen HT
    Appl Opt; 1999 Dec; 38(34):7128-32. PubMed ID: 18324259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated Optics for Astronomical Interferometry. III. Optical Validation of a Planar Optics Two-Telescope Beam Combiner.
    Haguenauer P; Berger JP; Rousselet-Perraut K; Kern P; Malbet F; Schanen-Duport I; Benech P
    Appl Opt; 2000 May; 39(13):2130-9. PubMed ID: 18345117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometrical and physical optics analysis for mm-wavelength refractor telescopes designed to map the cosmic microwave background.
    Gudmundsson JE
    Appl Opt; 2020 Apr; 59(11):3324-3339. PubMed ID: 32400442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-nulling protocols for fast, accurate, 3-D velocity measurements in stacks.
    Shinder II; Johnson AN; Filla BJ; Khromchenko VB; Moldover MR; Boyd J; Wright JD; Stoup J
    J Air Waste Manag Assoc; 2023 Aug; 73(8):600-617. PubMed ID: 37506216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stitching interferometry of high numerical aperture cylindrical optics without using a fringe-nulling routine.
    Peng J; Wang Q; Peng X; Yu Y
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):1964-72. PubMed ID: 26560911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the characteristics of the Golay3 multiple-mirror telescope.
    Feng W; Quanying W; Lin Q
    Appl Opt; 2009 Jan; 48(3):643-52. PubMed ID: 19151836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Common-path lateral-shearing nulling interferometry with a Savart plate for exoplanet detection.
    Murakami N; Baba N
    Opt Lett; 2010 Sep; 35(18):3003-5. PubMed ID: 20847759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards a photonic mid-infrared nulling interferometer in chalcogenide glass.
    Gretzinger T; Gross S; Arriola A; Withford MJ
    Opt Express; 2019 Mar; 27(6):8626-8638. PubMed ID: 31052677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars.
    Wallace K; Hardy G; Serabyn E
    Nature; 2000 Aug; 406(6797):700-2. PubMed ID: 10963588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic errors in nulling interferometers.
    Lay OP
    Appl Opt; 2004 Nov; 43(33):6100-23. PubMed ID: 15605550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exo-zodi detection capability of the Ground-Based European Nulling Interferometry Experiment (GENIE) instrument.
    Wallner O; Flatscher R; Ergenzinger K
    Appl Opt; 2006 Jun; 45(18):4404-10. PubMed ID: 16778949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical aperture synthesis with electronically connected telescopes.
    Dravins D; Lagadec T; Nuñez PD
    Nat Commun; 2015 Apr; 6():6852. PubMed ID: 25880705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spot size effects in miniaturized moving-optical-wedge interferometer.
    Al-Saeed TA; Khalil DA
    Appl Opt; 2011 Jun; 50(17):2671-8. PubMed ID: 21673771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achromatic nulling interferometer based on a geometric spin-redirection phase.
    Tavrov A; Bohr R; Totzeck M; Tiziani H; Takeda M
    Opt Lett; 2002 Dec; 27(23):2070-2. PubMed ID: 18033444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subaru Telescope -History, active/adaptive optics, instruments, and scientific achievements.
    Iye M
    Proc Jpn Acad Ser B Phys Biol Sci; 2021; 97(7):337-370. PubMed ID: 34380914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved Spatial Resolution Achieved by Chromatic Intensity Interferometry.
    Liu LC; Qu LY; Wu C; Cotler J; Ma F; Zheng MY; Xie XP; Chen YA; Zhang Q; Wilczek F; Pan JW
    Phys Rev Lett; 2021 Sep; 127(10):103601. PubMed ID: 34533368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OPD measurement and dispersion reduction in a monolithic interferometer.
    Hicks B; Cook T; Lane B; Chakrabarti S
    Opt Express; 2010 Aug; 18(16):17542-7. PubMed ID: 20721139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of nanopores down to 10 nm for use in deep-nulling interferometry.
    Wehling A; Pohl WH; Gerke B; Kipp S; Walla PJ
    Chemphyschem; 2008 Feb; 9(2):327-31. PubMed ID: 18189252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-resolution optical telescopes with local light diffraction shrinkage.
    Wang C; Tang D; Wang Y; Zhao Z; Wang J; Pu M; Zhang Y; Yan W; Gao P; Luo X
    Sci Rep; 2015 Dec; 5():18485. PubMed ID: 26677820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.