These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 20209160)
1. pH-Dependent metal ion toxicity influences the antibacterial activity of two natural mineral mixtures. Cunningham TM; Koehl JL; Summers JS; Haydel SE PLoS One; 2010 Mar; 5(3):e9456. PubMed ID: 20209160 [TBL] [Abstract][Full Text] [Related]
2. Broad-Spectrum Antimicrobial and Antibiofilm Activity of a Natural Clay Mineral from British Columbia, Canada. Behroozian S; Svensson SL; Li LY; Davies JE mBio; 2020 Oct; 11(5):. PubMed ID: 33024043 [TBL] [Abstract][Full Text] [Related]
3. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus. Otto CC; Cunningham TM; Hansen MR; Haydel SE Ann Clin Microbiol Antimicrob; 2010 Sep; 9():26. PubMed ID: 20846374 [TBL] [Abstract][Full Text] [Related]
4. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. Otto CC; Koehl JL; Solanky D; Haydel SE PLoS One; 2014; 9(12):e115172. PubMed ID: 25502790 [TBL] [Abstract][Full Text] [Related]
5. Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. Otto CC; Haydel SE PLoS One; 2013; 8(5):e64068. PubMed ID: 23691149 [TBL] [Abstract][Full Text] [Related]
6. Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Morrison KD; Underwood JC; Metge DW; Eberl DD; Williams LB Environ Geochem Health; 2014 Aug; 36(4):613-31. PubMed ID: 24258612 [TBL] [Abstract][Full Text] [Related]
7. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance. Morrison KD; Misra R; Williams LB Sci Rep; 2016 Jan; 6():19043. PubMed ID: 26743034 [TBL] [Abstract][Full Text] [Related]
8. What makes a natural clay antibacterial? Williams LB; Metge DW; Eberl DD; Harvey RW; Turner AG; Prapaipong P; Poret-Peterson AT Environ Sci Technol; 2011 Apr; 45(8):3768-73. PubMed ID: 21413758 [TBL] [Abstract][Full Text] [Related]
9. On the Antibacterial Activity of Azacarboxylate Ligands: Lowered Metal Ion Affinities for Bis-amide Derivatives of EDTA do not mean Reduced Activity. Mulla RS; Beecroft MS; Pal R; Aguilar JA; Pitarch-Jarque J; García-España E; Lurie-Luke E; Sharples GJ; Gareth Williams JA Chemistry; 2018 May; 24(28):7137-7148. PubMed ID: 29570870 [TBL] [Abstract][Full Text] [Related]
10. Reduced Iron-Containing Clay Minerals as Antibacterial Agents. Wang X; Dong H; Zeng Q; Xia Q; Zhang L; Zhou Z Environ Sci Technol; 2017 Jul; 51(13):7639-7647. PubMed ID: 28570809 [TBL] [Abstract][Full Text] [Related]
11. Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Bellotti D; Remelli M Molecules; 2021 May; 26(11):. PubMed ID: 34071479 [TBL] [Abstract][Full Text] [Related]
12. Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. Ning C; Wang X; Li L; Zhu Y; Li M; Yu P; Zhou L; Zhou Z; Chen J; Tan G; Zhang Y; Wang Y; Mao C Chem Res Toxicol; 2015 Sep; 28(9):1815-22. PubMed ID: 26258952 [TBL] [Abstract][Full Text] [Related]
13. Studies on the antibacterial activity of phanquone: chelating properties in relation to mode of action against Escherichia coli and Staphylococcus aureus. Husseini R; Stretton RJ Microbios; 1980; 29(116):109-25. PubMed ID: 7022141 [TBL] [Abstract][Full Text] [Related]
14. Insights into the Antibacterial Mechanism of Action of Chelating Agents by Selective Deprivation of Iron, Manganese, and Zinc. Paterson JR; Beecroft MS; Mulla RS; Osman D; Reeder NL; Caserta JA; Young TR; Pettigrew CA; Davies GE; Williams JAG; Sharples GJ Appl Environ Microbiol; 2022 Jan; 88(2):e0164121. PubMed ID: 34788072 [TBL] [Abstract][Full Text] [Related]
15. Metal-based biologically active azoles and β-lactams derived from sulfa drugs. Ebrahimi HP; Hadi JS; Almayah AA; Bolandnazar Z; Swadi AG; Ebrahimi A Bioorg Med Chem; 2016 Mar; 24(5):1121-31. PubMed ID: 26833242 [TBL] [Abstract][Full Text] [Related]
17. Oxidative degradation studies of an oxazolidinone-derived antibacterial agent, RWJ416457, in aqueous solutions. Dong J; Karki SB; Parikh M; Riggs JC; Huang L Drug Dev Ind Pharm; 2012 Nov; 38(11):1289-97. PubMed ID: 22263626 [TBL] [Abstract][Full Text] [Related]
18. Effect of pH and metal ions on the decomposition rate of S-nitrosocysteine. Gu J; Lewis RS Ann Biomed Eng; 2007 Sep; 35(9):1554-60. PubMed ID: 17510805 [TBL] [Abstract][Full Text] [Related]
19. Chitosan-cobalt(II) and nickel(II) chelates as antibacterial agents. Adewuyi S; Kareem KT; Atayese AO; Amolegbe SA; Akinremi CA Int J Biol Macromol; 2011 Mar; 48(2):301-3. PubMed ID: 21145344 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Demirci S; Ustaoğlu Z; Yılmazer GA; Sahin F; Baç N Appl Biochem Biotechnol; 2014 Feb; 172(3):1652-62. PubMed ID: 24242073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]