BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20209535)

  • 1. Binding and inhibition of copper ions to RecA inteins from Mycobacterium tuberculosis.
    Zhang L; Xiao N; Pan Y; Zheng Y; Pan Z; Luo Z; Xu X; Liu Y
    Chemistry; 2010 Apr; 16(14):4297-306. PubMed ID: 20209535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein.
    Shingledecker K; Jiang Sq; Paulus H
    Arch Biochem Biophys; 2000 Mar; 375(1):138-44. PubMed ID: 10683259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimization and stabilization of the Mycobacterium tuberculosis recA intein.
    Hiraga K; Derbyshire V; Dansereau JT; Van Roey P; Belfort M
    J Mol Biol; 2005 Dec; 354(4):916-26. PubMed ID: 16288917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal ions binding to recA inteins from Mycobacterium tuberculosis.
    Zhang L; Zheng Y; Xi Z; Luo Z; Xu X; Wang C; Liu Y
    Mol Biosyst; 2009 Jun; 5(6):644-50. PubMed ID: 19462022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression.
    Nichols NM; Benner JS; Martin DD; Evans TC
    Biochemistry; 2003 May; 42(18):5301-11. PubMed ID: 12731871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations.
    Dassa B; Amitai G; Caspi J; Schueler-Furman O; Pietrokovski S
    Biochemistry; 2007 Jan; 46(1):322-30. PubMed ID: 17198403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing.
    Sun P; Ye S; Ferrandon S; Evans TC; Xu MQ; Rao Z
    J Mol Biol; 2005 Nov; 353(5):1093-105. PubMed ID: 16219320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein splicing of the three Pyrococcus abyssi ribonucleotide reductase inteins.
    Kerrigan AM; Powers TL; Dorval DM; Reitter JN; Mills KV
    Biochem Biophys Res Commun; 2009 Sep; 387(1):153-7. PubMed ID: 19577540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein splicing in cis and in trans.
    Saleh L; Perler FB
    Chem Rec; 2006; 6(4):183-93. PubMed ID: 16900466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics differentiate between active and inactive inteins.
    Cronin M; Coolbaugh MJ; Nellis D; Zhu J; Wood DW; Nussinov R; Ma B
    Eur J Med Chem; 2015 Feb; 91():51-62. PubMed ID: 25087201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cisplatin inhibits protein splicing, suggesting inteins as therapeutic targets in mycobacteria.
    Zhang L; Zheng Y; Callahan B; Belfort M; Liu Y
    J Biol Chem; 2011 Jan; 286(2):1277-82. PubMed ID: 21059649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semisynthesis of proteins using split inteins.
    Ludwig C; Schwarzer D; Zettler J; Garbe D; Janning P; Czeslik C; Mootz HD
    Methods Enzymol; 2009; 462():77-96. PubMed ID: 19632470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism.
    Du Z; Shemella PT; Liu Y; McCallum SA; Pereira B; Nayak SK; Belfort G; Belfort M; Wang C
    J Am Chem Soc; 2009 Aug; 131(32):11581-9. PubMed ID: 19630416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein.
    O'Brien KM; Schufreider AK; McGill MA; O'Brien KM; Reitter JN; Mills KV
    Biochem Biophys Res Commun; 2010 Dec; 403(3-4):457-61. PubMed ID: 21094142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Catalytic Role of B-Block Histidine in the N-S Acyl Shift Step of Protein Splicing.
    Mujika JI; Lopez X
    J Phys Chem B; 2017 Aug; 121(33):7786-7796. PubMed ID: 28737941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of protein splicing in trans mediated by a semisynthetic split intein.
    Lew BM; Mills KV; Paulus H
    Biopolymers; 1999; 51(5):355-62. PubMed ID: 10685046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for protein trans-splicing by a bacterial intein-like domain--protein ligation without nucleophilic side chains.
    Aranko AS; Oeemig JS; Iwaï H
    FEBS J; 2013 Jul; 280(14):3256-69. PubMed ID: 23621571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments.
    Shingledecker K; Jiang SQ; Paulus H
    Gene; 1998 Jan; 207(2):187-95. PubMed ID: 9511761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate.
    Du Z; Zheng Y; Patterson M; Liu Y; Wang C
    J Am Chem Soc; 2011 Jul; 133(26):10275-82. PubMed ID: 21604815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.