BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20210311)

  • 1. Insights into heterocyclization from two highly similar enzymes.
    McIntosh JA; Donia MS; Schmidt EW
    J Am Chem Soc; 2010 Mar; 132(12):4089-91. PubMed ID: 20210311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine molecular machines: heterocyclization in cyanobactin biosynthesis.
    McIntosh JA; Schmidt EW
    Chembiochem; 2010 Jul; 11(10):1413-21. PubMed ID: 20540059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.
    Sardar D; Lin Z; Schmidt EW
    Chem Biol; 2015 Jul; 22(7):907-16. PubMed ID: 26165156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition sequences and substrate evolution in cyanobactin biosynthesis.
    Sardar D; Pierce E; McIntosh JA; Schmidt EW
    ACS Synth Biol; 2015 Feb; 4(2):167-76. PubMed ID: 24625112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence.
    Sudek S; Haygood MG; Youssef DT; Schmidt EW
    Appl Environ Microbiol; 2006 Jun; 72(6):4382-7. PubMed ID: 16751554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.
    Leikoski N; Liu L; Jokela J; Wahlsten M; Gugger M; Calteau A; Permi P; Kerfeld CA; Sivonen K; Fewer DP
    Chem Biol; 2013 Aug; 20(8):1033-43. PubMed ID: 23911585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Mechanism of the Cyanobactin Heterocyclase Enzyme.
    Ge Y; Czekster CM; Miller OK; Botting CH; Schwarz-Linek U; Naismith JH
    Biochemistry; 2019 Apr; 58(16):2125-2132. PubMed ID: 30912640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Nucleophile Chemoselectivity in Cyanobactin YcaO Heterocyclases PatD and TruD.
    Gu W; Zheng Y; Pogorelov T; Nair SK; Schmidt EW
    ACS Chem Biol; 2022 May; 17(5):1215-1225. PubMed ID: 35420020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria.
    Sivonen K; Leikoski N; Fewer DP; Jokela J
    Appl Microbiol Biotechnol; 2010 May; 86(5):1213-25. PubMed ID: 20195859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
    Purushothaman M; Sarkar S; Morita M; Gugger M; Schmidt EW; Morinaka BI
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8460-8465. PubMed ID: 33586286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis.
    Gu W; Sardar D; Pierce E; Schmidt EW
    J Am Chem Soc; 2018 Nov; 140(47):16213-16221. PubMed ID: 30387998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of leader peptide binding enables leader-free cyanobactin processing.
    Koehnke J; Mann G; Bent AF; Ludewig H; Shirran S; Botting C; Lebl T; Houssen W; Jaspars M; Naismith JH
    Nat Chem Biol; 2015 Aug; 11(8):558-563. PubMed ID: 26098679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking chemistry and genetics in the growing cyanobactin natural products family.
    Donia MS; Schmidt EW
    Chem Biol; 2011 Apr; 18(4):508-19. PubMed ID: 21513887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural biology of patellamide biosynthesis.
    Koehnke J; Bent AF; Houssen WE; Mann G; Jaspars M; Naismith JH
    Curr Opin Struct Biol; 2014 Dec; 29():112-121. PubMed ID: 25460274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications.
    Read BA; Tabita FR
    Arch Biochem Biophys; 1994 Jul; 312(1):210-8. PubMed ID: 8031129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromocontryphan: post-translational bromination of tryptophan.
    Jimenez EC; Craig AG; Watkins M; Hillyard DR; Gray WR; Gulyas J; Rivier JE; Cruz LJ; Olivera BM
    Biochemistry; 1997 Feb; 36(5):989-94. PubMed ID: 9033387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A global assembly line for cyanobactins.
    Donia MS; Ravel J; Schmidt EW
    Nat Chem Biol; 2008 Jun; 4(6):341-3. PubMed ID: 18425112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational modification in microviridin biosynthesis.
    Philmus B; Christiansen G; Yoshida WY; Hemscheidt TK
    Chembiochem; 2008 Dec; 9(18):3066-73. PubMed ID: 19035375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.