BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20210339)

  • 1. Biotransformation of organic-rich copper-bearing black shale by indigenous microorganisms isolated from lubin copper mine (Poland).
    Matlakowska R; Narkiewicz W; Sklodowska A
    Environ Sci Technol; 2010 Apr; 44(7):2433-40. PubMed ID: 20210339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures.
    Matlakowska R; Sklodowska A
    J Appl Microbiol; 2009 Sep; 107(3):858-66. PubMed ID: 19320944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic Monocline, Poland) by indigenous microorganisms.
    Matlakowska R; Sklodowska A
    Chemosphere; 2011 May; 83(9):1255-61. PubMed ID: 21444104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of factors responsible for the bioweathering of copper minerals from organic-rich copper-bearing Kupferschiefer black shale.
    Włodarczyk A; Szymańska A; Skłodowska A; Matlakowska R
    Chemosphere; 2016 Apr; 148():416-25. PubMed ID: 26835647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9.
    Rajpert L; Skłodowska A; Matlakowska R
    Chemosphere; 2013 May; 91(9):1257-65. PubMed ID: 23490182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase.
    Wengel M; Kothe E; Schmidt CM; Heide K; Gleixner G
    Sci Total Environ; 2006 Aug; 367(1):383-93. PubMed ID: 16483638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular compounds produced by bacterial consortium promoting elements mobilization from polymetallic Kupferschiefer black shale (Fore-Sudetic Monocline, Poland).
    Włodarczyk A; Stasiuk R; Skłodowska A; Matlakowska R
    Chemosphere; 2015 Mar; 122():273-279. PubMed ID: 25522852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial weathering of fossil organic matter and organic carbon mobilization from subterrestrial Kupferschiefer black shale: long-term laboratory studies.
    Stasiuk R; Włodarczyk A; Karcz P; Janas M; Skłodowska A; Matlakowska R
    Environ Microbiol Rep; 2017 Aug; 9(4):459-466. PubMed ID: 28618204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine.
    Matlakowska R; Skłodowska A; Nejbert K
    FEMS Microbiol Ecol; 2012 Jul; 81(1):99-110. PubMed ID: 22329644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering.
    Petsch ST; Eglington TI; Edwards KJ
    Science; 2001 May; 292(5519):1127-31. PubMed ID: 11283356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.
    Dziewit L; Pyzik A; Szuplewska M; Matlakowska R; Mielnicki S; Wibberg D; Schlüter A; Pühler A; Bartosik D
    Front Microbiol; 2015; 6():152. PubMed ID: 26074880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon speciation and composition of natural microbial communities in polluted and pristine sediments of the Eastern Mediterranean Sea.
    Polymenakou PN; Tselepides A; Stephanou EG; Bertilsson S
    Mar Pollut Bull; 2006 Nov; 52(11):1396-405. PubMed ID: 16712878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineral surface control of organic carbon in black shale.
    Kennedy MJ; Pevear DR; Hill RJ
    Science; 2002 Jan; 295(5555):657-60. PubMed ID: 11809966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbes and metals: interactions in the environment.
    Haferburg G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):453-67. PubMed ID: 18072246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Millimeter scale variations in the isotopic composition of vein sulphide minerals in the Kupferschiefer deposits, Lubin area, SW Poland.
    Krouse HR; Parafiniuk J; Nowak J; Halas S
    Isotopes Environ Health Stud; 2006 Dec; 42(4):327-33. PubMed ID: 17090485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution.
    Drewniak L; Styczek A; Majder-Lopatka M; Sklodowska A
    Environ Pollut; 2008 Dec; 156(3):1069-74. PubMed ID: 18550235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial removal of uranium in uranium-bearing black shale.
    Lee JU; Kim SM; Kim KW; Kim IS
    Chemosphere; 2005 Mar; 59(1):147-54. PubMed ID: 15698655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of copper by Pseudomonas putida strain S4 isolated from copper mines.
    Saxena D; Gowri PM; Mago R; Srivastav S
    Indian J Exp Biol; 2001 Jun; 39(6):590-3. PubMed ID: 12562024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.