BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20210346)

  • 41. Transport characteristics of a novel peptide platform for CNS therapeutics.
    Bertrand Y; Currie JC; Demeule M; Régina A; Ché C; Abulrob A; Fatehi D; Sartelet H; Gabathuler R; Castaigne JP; Stanimirovic D; Béliveau R
    J Cell Mol Med; 2010 Dec; 14(12):2827-39. PubMed ID: 19818094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro efficacy of doxorubicin and etoposide against a feline injection site sarcoma cell line.
    Hill J; Lawrence J; Saba C; Turek M; Feldhaeusser B; Coutermarsh-Ott S; Barber J; Smith J; Gogal R
    Res Vet Sci; 2014 Oct; 97(2):348-56. PubMed ID: 25085537
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy.
    Rousselle C; Clair P; Lefauconnier JM; Kaczorek M; Scherrmann JM; Temsamani J
    Mol Pharmacol; 2000 Apr; 57(4):679-86. PubMed ID: 10727512
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein.
    Huile G; Shuaiqi P; Zhi Y; Shijie C; Chen C; Xinguo J; Shun S; Zhiqing P; Yu H
    Biomaterials; 2011 Nov; 32(33):8669-75. PubMed ID: 21843903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Desirability function combining metabolic stability and functionality of peptides.
    Van Dorpe S; Adriaens A; Vermeire S; Polis I; Peremans K; Spiegeleer BD
    J Pept Sci; 2011 May; 17(5):398-404. PubMed ID: 21294224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Combination of Tri-Leucine and Angiopep-2 Drives a Polyanionic Polymalic Acid Nanodrug Platform Across the Blood-Brain Barrier.
    Israel LL; Braubach O; Galstyan A; Chiechi A; Shatalova ES; Grodzinski Z; Ding H; Black KL; Ljubimova JY; Holler E
    ACS Nano; 2019 Feb; 13(2):1253-1271. PubMed ID: 30633492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of variable lymphocyte receptors that can target therapeutics to pathologically exposed brain extracellular matrix.
    Umlauf BJ; Clark PA; Lajoie JM; Georgieva JV; Bremner S; Herrin BR; Kuo JS; Shusta EV
    Sci Adv; 2019 May; 5(5):eaau4245. PubMed ID: 31106264
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and biological characterization of protease-activated prodrugs of doxazolidine.
    Barthel BL; Rudnicki DL; Kirby TP; Colvin SM; Burkhart DJ; Koch TH
    J Med Chem; 2012 Jul; 55(14):6595-607. PubMed ID: 22742660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM).
    di Polidoro AC; Cafarchio A; Vecchione D; Donato P; De Nola F; Torino E
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of the Drug Position on Bioactivity in Angiopep-2-Daunomycin Conjugates.
    Pethő L; Oláh-Szabó R; Mező G
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein Toxin Chaperoned by LRP-1-Targeted Virus-Mimicking Vesicles Induces High-Efficiency Glioblastoma Therapy In Vivo.
    Jiang Y; Yang W; Zhang J; Meng F; Zhong Z
    Adv Mater; 2018 Jul; 30(30):e1800316. PubMed ID: 29893017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue concentration of systemically administered antineoplastic agents in human brain tumors.
    Pitz MW; Desai A; Grossman SA; Blakeley JO
    J Neurooncol; 2011 Sep; 104(3):629-38. PubMed ID: 21400119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Screening and production of arylsulfatases for target therapy with etoposide 4'-sulfate, an antitumor prodrug.
    Yamamoto S; Ueki T; Tomita K; Ohnuma T; Sawada Y; Fukagawa Y; Oki T
    Biosci Biotechnol Biochem; 1995 Jun; 59(6):1057-61. PubMed ID: 7612991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescence assays and pharmacokinetic studies of 4'-deoxydoxorubicin and doxorubicin in organs of mice bearing solid tumors.
    Formelli F; Pollini C; Casazza AM; di Marco A; Mariani A
    Cancer Chemother Pharmacol; 1981; 5(3):139-44. PubMed ID: 7296751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Blood-brain barrier and the penetration of cytostatic drugs].
    Unger C; Eibl H; von Heyden HW; Krisch B; Nagel GA
    Klin Wochenschr; 1985 Jun; 63(12):565-71. PubMed ID: 2411995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peptides in clinical development for the treatment of brain tumors.
    Guidotti G; Brambilla L; Rossi D
    Curr Opin Pharmacol; 2019 Aug; 47():102-109. PubMed ID: 30959356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [International therapeutics].
    Moreno Alvarez PJ
    Farm Hosp; 2003; 27(2):127-31. PubMed ID: 12717569
    [No Abstract]   [Full Text] [Related]  

  • 58. Pharmacology and drug distribution.
    Morgan LR; Weatherall TJ
    Int J Radiat Oncol Biol Phys; 1979 Aug; 5(8):1205-12. PubMed ID: 575116
    [No Abstract]   [Full Text] [Related]  

  • 59. An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain Tumors.
    Parrasia S; Rossa A; Varanita T; Checchetto V; De Lorenzi R; Zoratti M; Paradisi C; Ruzza P; Mattarei A; Szabò I; Biasutto L
    Pharmaceuticals (Basel); 2021 Feb; 14(2):. PubMed ID: 33562146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson's disease.
    Huang R; Ma H; Guo Y; Liu S; Kuang Y; Shao K; Li J; Liu Y; Han L; Huang S; An S; Ye L; Lou J; Jiang C
    Pharm Res; 2013 Oct; 30(10):2549-59. PubMed ID: 23703371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.