These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The N-terminus of the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for both nucleotide binding and heterotropic effects. Sakash JB; Kantrowitz ER Biochemistry; 1998 Jan; 37(1):281-8. PubMed ID: 9425049 [TBL] [Abstract][Full Text] [Related]
3. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase. Williams MK; Kantrowitz ER Biochim Biophys Acta; 1998 Dec; 1429(1):249-58. PubMed ID: 9920401 [TBL] [Abstract][Full Text] [Related]
4. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related]
5. Conversion of the allosteric regulatory patterns of aspartate transcarbamoylase by exchange of a single beta-strand between diverged regulatory chains. Liu L; Wales ME; Wild JR Biochemistry; 1997 Mar; 36(11):3126-32. PubMed ID: 9115988 [TBL] [Abstract][Full Text] [Related]
6. In the presence of CTP, UTP becomes an allosteric inhibitor of aspartate transcarbamoylase. Wild JR; Loughrey-Chen SJ; Corder TS Proc Natl Acad Sci U S A; 1989 Jan; 86(1):46-50. PubMed ID: 2643106 [TBL] [Abstract][Full Text] [Related]
7. From feedback inhibition to allostery: the enduring example of aspartate transcarbamoylase. Gerhart J FEBS J; 2014 Jan; 281(2):612-20. PubMed ID: 23953008 [TBL] [Abstract][Full Text] [Related]
8. The use of alanine scanning mutagenesis to determine the role of the N-terminus of the regulatory chain in the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase. Dembowski NJ; Kantrowitz ER Protein Eng; 1994 May; 7(5):673-9. PubMed ID: 8073037 [TBL] [Abstract][Full Text] [Related]
9. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase. Cockrell GM; Zheng Y; Guo W; Peterson AW; Truong JK; Kantrowitz ER Biochemistry; 2013 Nov; 52(45):8036-47. PubMed ID: 24138583 [TBL] [Abstract][Full Text] [Related]
10. The use of nucleotide analogs to evaluate the mechanism of the heterotropic response of Escherichia coli aspartate transcarbamoylase. Sakash JB; Tsen A; Kantrowitz ER Protein Sci; 2000 Jan; 9(1):53-63. PubMed ID: 10739247 [TBL] [Abstract][Full Text] [Related]
11. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. Newell JO; Markby DW; Schachman HK J Biol Chem; 1989 Feb; 264(5):2476-81. PubMed ID: 2644262 [TBL] [Abstract][Full Text] [Related]
12. Role of allosteric: zinc interdomain region of the regulatory subunit in the allosteric regulation of aspartate transcarbamoylase from Escherichia coli. Rastogi VK; Swanson R; Hartberg YM; Wales ME; Wild JR Arch Biochem Biophys; 1998 Jun; 354(2):215-24. PubMed ID: 9637729 [TBL] [Abstract][Full Text] [Related]
13. Site-directed alterations to the geometry of the aspartate transcarbamoylase zinc domain: selective alteration to regulation by heterotropic ligands, isoelectric point, and stability in urea. Strang CJ; Wales ME; Brown DM; Wild JR Biochemistry; 1993 Apr; 32(16):4156-67. PubMed ID: 8476846 [TBL] [Abstract][Full Text] [Related]
14. Intramolecular signal transmission in enterobacterial aspartate transcarbamylases II. Engineering co-operativity and allosteric regulation in the aspartate transcarbamylase of Erwinia herbicola. Cunin R; Rani CS; Van Vliet F; Wild JR; Wales M J Mol Biol; 1999 Dec; 294(5):1401-11. PubMed ID: 10600394 [TBL] [Abstract][Full Text] [Related]
15. Discrimination between nucleotide effector responses of aspartate transcarbamoylase due to a single site substitution in the allosteric binding site. Corder TS; Wild JR J Biol Chem; 1989 May; 264(13):7425-30. PubMed ID: 2651439 [TBL] [Abstract][Full Text] [Related]
16. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase. Newton CJ; Stevens RC; Kantrowitz ER Biochemistry; 1992 Mar; 31(11):3026-32. PubMed ID: 1550826 [TBL] [Abstract][Full Text] [Related]
17. Different amino acid substitutions at the same position in the nucleotide-binding site of aspartate transcarbamoylase have diverse effects on the allosteric properties of the enzyme. Wente SR; Schachman HK J Biol Chem; 1991 Nov; 266(31):20833-9. PubMed ID: 1939134 [TBL] [Abstract][Full Text] [Related]
18. Application of methyl-TROSY NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase. Velyvis A; Schachman HK; Kay LE J Mol Biol; 2009 Apr; 387(3):540-7. PubMed ID: 19302799 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of CTP-ligated T state aspartate transcarbamoylase at 2.5 A resolution: implications for ATCase mutants and the mechanism of negative cooperativity. Kosman RP; Gouaux JE; Lipscomb WN Proteins; 1993 Feb; 15(2):147-76. PubMed ID: 8441751 [TBL] [Abstract][Full Text] [Related]
20. Temperature effects on the allosteric responses of native and chimeric aspartate transcarbamoylases. Liu L; Wales ME; Wild JR J Mol Biol; 1998 Oct; 282(4):891-901. PubMed ID: 9743634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]