BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20210447)

  • 1. Investigating the spectral characteristics of backscattering from heterogeneous spherical nuclei using broadband finite-difference time-domain simulations.
    Chao GS; Sung KB
    J Biomed Opt; 2010; 15(1):015007. PubMed ID: 20210447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.
    Stark J; Rothe T; Kieß S; Simon S; Kienle A
    Phys Med Biol; 2016 Apr; 61(7):2749-61. PubMed ID: 26976736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy.
    Bosschaart N; Faber DJ; van Leeuwen TG; Aalders MC
    J Biomed Opt; 2011 Mar; 16(3):030503. PubMed ID: 21456858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy.
    Lau C; Sćepanović O; Mirkovic J; McGee S; Yu CC; Fulghum S; Wallace M; Tunnell J; Bechtel K; Feld M
    J Biomed Opt; 2009; 14(2):024031. PubMed ID: 19405760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy.
    Hsiao A; Hunter M; Greiner C; Gupta S; Georgakoudi I
    J Biomed Opt; 2011 Mar; 16(3):037007. PubMed ID: 21456879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures.
    Mourant JR; Johnson TM; Carpenter S; Guerra A; Aida T; Freyer JP
    J Biomed Opt; 2002 Jul; 7(3):378-87. PubMed ID: 12175287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography.
    Dennis T; Dyer SD; Dienstfrey A; Singh G; Rice P
    J Biomed Opt; 2008; 13(2):024004. PubMed ID: 18465967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging human epithelial properties with polarized light-scattering spectroscopy.
    Gurjar RS; Backman V; Perelman LT; Georgakoudi I; Badizadegan K; Itzkan I; Dasari RR; Feld MS
    Nat Med; 2001 Nov; 7(11):1245-8. PubMed ID: 11689891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical insight into light scattering by photoreceptor cell nuclei.
    Kreysing M; Boyde L; Guck J; Chalut KJ
    Opt Lett; 2010 Aug; 35(15):2639-41. PubMed ID: 20680084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the size and refractive index of homogeneous spherical aerosol particles using Mie resonance spectroscopy.
    Lew LJN; Ting MV; Preston TC
    Appl Opt; 2018 Jun; 57(16):4601-4609. PubMed ID: 29877369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance.
    Myakov A; Nieman L; Wicky L; Utzinger U; Richards-Kortum R; Sokolov K
    J Biomed Opt; 2002 Jul; 7(3):388-97. PubMed ID: 12175288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma.
    Müller MG; Valdez TA; Georgakoudi I; Backman V; Fuentes C; Kabani S; Laver N; Wang Z; Boone CW; Dasari RR; Shapshay SM; Feld MS
    Cancer; 2003 Apr; 97(7):1681-92. PubMed ID: 12655525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FDTD simulation of electromagnetic wave scattering from retina cells.
    Abdallah SS; Ramahi O; Bizheva K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1639-42. PubMed ID: 18002287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cell spatial organization and size distribution on ultrasound backscattering.
    Saha RK; Kolios MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2118-31. PubMed ID: 21989875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures.
    Xu M; Wu TT; Qu JY
    J Biomed Opt; 2008; 13(2):024015. PubMed ID: 18465978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of scattering for spectral imaging of turbid biologic tissue.
    Arnoldussen ME; Cohen D; Bearman GH; Grundfest WS
    J Biomed Opt; 2000 Jul; 5(3):300-6. PubMed ID: 10958616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband enhanced backscattering spectroscopy of strongly scattering media.
    Muskens OL; Lagendijk A
    Opt Express; 2008 Jan; 16(2):1222-31. PubMed ID: 18542196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method.
    Lu JQ; Yang P; Hu XH
    J Biomed Opt; 2005; 10(2):024022. PubMed ID: 15910095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.