These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20210459)

  • 1. Microcomputer-based artificial vision support system for real-time image processing for camera-driven visual prostheses.
    Fink W; You CX; Tarbell MA
    J Biomed Opt; 2010; 15(1):016013. PubMed ID: 20210459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial vision support system (AVS(2)) for improved prosthetic vision.
    Fink W; Tarbell MA
    J Med Eng Technol; 2014 Nov; 38(8):385-95. PubMed ID: 25286349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses.
    Fink W; Tarbell MA
    Comput Methods Programs Biomed; 2009 Dec; 96(3):226-33. PubMed ID: 19651459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wearable real-time image processor for a vision prosthesis.
    Tsai D; Morley JW; Suaning GJ; Lovell NH
    Comput Methods Programs Biomed; 2009 Sep; 95(3):258-69. PubMed ID: 19394713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart image processing system for retinal prosthesis.
    Weiland JD; Parikh N; Pradeep V; Medioni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():300-3. PubMed ID: 23365889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VIPER: a general-purpose digital image-processing system applied to video microscopy.
    Brunner M; Ittner W
    Comput Methods Programs Biomed; 1988; 26(2):167-81. PubMed ID: 3359767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a high-resolution optoelectronic retinal prosthesis.
    Palanker D; Vankov A; Huie P; Baccus S
    J Neural Eng; 2005 Mar; 2(1):S105-20. PubMed ID: 15876646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image acquisition and image processing for the intraocular vision aid.
    Krisch I; Hijazi N; Hosticka BJ
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():171-3. PubMed ID: 12451806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A man-machine vision interface for sensing the environment.
    Adjouadi M
    J Rehabil Res Dev; 1992; 29(2):57-76. PubMed ID: 1578393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa.
    Yanai D; Weiland JD; Mahadevappa M; Greenberg RJ; Fine I; Humayun MS
    Am J Ophthalmol; 2007 May; 143(5):820-827. PubMed ID: 17362868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An infrared image-enhancement algorithm in simulated prosthetic vision: Enlarging working environment of future retinal prostheses.
    Liang J; Li H; Chen J; Zhai Z; Wang J; Di L; Chai X
    Artif Organs; 2022 Nov; 46(11):2147-2158. PubMed ID: 35377463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wearable mobility device for the blind using retina-inspired dynamic vision sensors.
    Ghaderi VS; Mulas M; Pereira VF; Everding L; Weikersdorfer D; Conradt J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3371-4. PubMed ID: 26737015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
    Macé MJ; Guivarch V; Denis G; Jouffrais C
    Artif Organs; 2015 Jul; 39(7):E102-13. PubMed ID: 25900238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision.
    Wang J; Li H; Fu W; Chen Y; Li L; Lyu Q; Han T; Chai X
    Artif Organs; 2016 Jan; 40(1):94-100. PubMed ID: 25981202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated prosthetic vision: improving text accessibility with retinal prostheses.
    Denis G; Jouffrais C; Mailhes C; Mace MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1719-22. PubMed ID: 25570307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An image-processing system, motion analysis oriented (IPS-100), applied to microscopy.
    Gualtieri P; Coltelli P
    Comput Methods Programs Biomed; 1991 Sep; 36(1):15-25. PubMed ID: 1760921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model control of image processing: pupillometry.
    Nguyen AH; Stark LW
    Comput Med Imaging Graph; 1993; 17(1):21-33. PubMed ID: 8448762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image processing for a high-resolution optoelectronic retinal prosthesis.
    Asher A; Segal WA; Baccus SA; Yaroslavsky LP; Palanker DV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):993-1004. PubMed ID: 17554819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.