These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20210461)

  • 1. Relative capacities of time-gated versus continuous-wave imaging to localize tissue embedded vessels with increasing depth.
    Patel NL; Lin ZJ; Rathore Y; Livingston EH; Liu H; Alexandrakis G
    J Biomed Opt; 2010; 15(1):016015. PubMed ID: 20210461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of optical scanned images of inhomogeneities in biological tissues by Monte Carlo simulation.
    Jeeva JB; Singh M
    Comput Biol Med; 2015 May; 60():92-9. PubMed ID: 25770705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic reflectance angular domain spectroscopic imaging.
    Zhang Y; Vasefi F; Ng E; Chamson-Reig A; Kaminska B; Carson JJ
    J Biomed Opt; 2014; 19(7):076010. PubMed ID: 25023414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated scatter performance of an inverse-geometry dedicated breast CT system.
    Bhagtani R; Schmidt TG
    Med Phys; 2009 Mar; 36(3):788-96. PubMed ID: 19378739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voxel-based, parallel simulation of light in skin tissue for the reconstruction of subsurface skin lesion volumes.
    D'Alessandro B; Dhawan AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8448-51. PubMed ID: 22256308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach.
    Behin-Ain S; van Doorn T; Patterson JR
    Phys Med Biol; 2002 Aug; 47(16):2935-45. PubMed ID: 12222857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of reflectance imaging using a parallel Monte Carlo method.
    Chen C; Lu JQ; Li K; Zhao S; Brock RS; Hu XH
    Med Phys; 2007 Jul; 34(7):2939-48. PubMed ID: 17822002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transillumination imaging for blood oxygen saturation estimation of skin lesions.
    D'Alessandro B; Dhawan AP
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2660-7. PubMed ID: 22835531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of light-tissue interaction: three-dimensional simulation for trans-illumination-based imaging of skin lesions.
    Patwardhan SV; Dhawan AP; Relue PA
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1227-36. PubMed ID: 16041986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First photon detection in time-resolved transillumination imaging: a theoretical evaluation.
    Behin-Ain S; van Doorn T; Patterson JR
    Phys Med Biol; 2004 Sep; 49(17):3939-55. PubMed ID: 15470915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transillumination imaging performance: spatial resolution simulation studies.
    Hebden JC; Kruger RA
    Med Phys; 1990; 17(1):41-7. PubMed ID: 2308546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media.
    Chetty IJ; Charland PM; Tyagi N; McShan DL; Fraass BA; Bielajew AF
    Med Phys; 2003 Apr; 30(4):563-73. PubMed ID: 12722808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transillumination imaging performance: a time-of-flight imaging system.
    Hebden JC; Kruger RA
    Med Phys; 1990; 17(3):351-6. PubMed ID: 2385191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet representations for monitoring changes in teeth imaged with digital imaging fiber-optic transillumination.
    Keem S; Elbaum M
    IEEE Trans Med Imaging; 1997 Oct; 16(5):653-63. PubMed ID: 9368121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular contrast in narrow-band and white light imaging.
    Du Le VN; Wang Q; Gould T; Ramella-Roman JC; Pfefer TJ
    Appl Opt; 2014 Jun; 53(18):4061-71. PubMed ID: 24979441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of skin optical parameters for real-time hyperspectral imaging applications.
    Bjorgan A; Milanic M; Randeberg LL
    J Biomed Opt; 2014 Jun; 19(6):066003. PubMed ID: 24898603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries.
    Zhang H; Salo D; Kim DM; Komarov S; Tai YC; Berezin MY
    J Biomed Opt; 2016 Dec; 21(12):126006. PubMed ID: 27930773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive theoretical comparison of proton imaging set-ups in terms of spatial resolution.
    Krah N; Khellaf F; Létang JM; Rit S; Rinaldi I
    Phys Med Biol; 2018 Jul; 63(13):135013. PubMed ID: 29864022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography.
    Björn S; Englmeier KH; Ntziachristos V; Schulz R
    J Biomed Opt; 2011 Apr; 16(4):046005. PubMed ID: 21529074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a compensation algorithm for accurate depth localization in diffuse optical tomography.
    Niu H; Tian F; Lin ZJ; Liu H
    Opt Lett; 2010 Feb; 35(3):429-31. PubMed ID: 20125744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.