BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20210787)

  • 21. The role of glutathione in the transport and catabolism of nitric oxide.
    Hogg N; Singh RJ; Kalyanaraman B
    FEBS Lett; 1996 Mar; 382(3):223-8. PubMed ID: 8605974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutathione redox cycle regulates nitric oxide-mediated glyceraldehyde-3-phosphate dehydrogenase inhibition.
    Padgett CM; Whorton AR
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C99-108. PubMed ID: 9038816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism.
    Jourd'heuil D; Jourd'heuil FL; Feelisch M
    J Biol Chem; 2003 May; 278(18):15720-6. PubMed ID: 12595536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity.
    Gegg ME; Clark JB; Heales SJ
    Brain Res; 2005 Mar; 1036(1-2):1-6. PubMed ID: 15725395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acyl phosphatase activity of NO-inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH): a potential mechanism for uncoupling glycolysis from ATP generation in NO-producing cells.
    Albina JE; Mastrofrancesco B; Reichner JS
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):5-9. PubMed ID: 10377238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of Elevated S-Glutathionylated GAPDH in Chronic Neurodegenerative Diseases.
    Hyslop PA; Boggs LN; Chaney MO
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms and potential clinical significance of S-glutathionylation.
    Dalle-Donne I; Milzani A; Gagliano N; Colombo R; Giustarini D; Rossi R
    Antioxid Redox Signal; 2008 Mar; 10(3):445-73. PubMed ID: 18092936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling.
    Brüne B; Lapetina EG
    Genet Eng (N Y); 1995; 17():149-64. PubMed ID: 7540026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase and caspase-3 by nitric oxide.
    Brüne B; Mohr S
    Curr Protein Pept Sci; 2001 Mar; 2(1):61-72. PubMed ID: 12369901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular responses to nitric oxide: role of protein S-thiolation/dethiolation.
    Padgett CM; Whorton AR
    Arch Biochem Biophys; 1998 Oct; 358(2):232-42. PubMed ID: 9784235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutathione disulfide and S-nitrosoglutathione detoxification by Mycobacterium tuberculosis thioredoxin system.
    Attarian R; Bennie C; Bach H; Av-Gay Y
    FEBS Lett; 2009 Oct; 583(19):3215-20. PubMed ID: 19737561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathionylation of proteins by glutathione disulfide S-oxide.
    Huang KP; Huang FL
    Biochem Pharmacol; 2002 Sep; 64(5-6):1049-56. PubMed ID: 12213604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia.
    Pan KT; Chen YY; Pu TH; Chao YS; Yang CY; Bomgarden RD; Rogers JC; Meng TC; Khoo KH
    Antioxid Redox Signal; 2014 Mar; 20(9):1365-81. PubMed ID: 24152285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural snapshots of nitrosoglutathione binding and reactivity underlying S-nitrosylation of photosynthetic GAPDH.
    Mattioli EJ; Rossi J; Meloni M; De Mia M; Marchand CH; Tagliani A; Fanti S; Falini G; Trost P; Lemaire SD; Fermani S; Calvaresi M; Zaffagnini M
    Redox Biol; 2022 Aug; 54():102387. PubMed ID: 35793584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein S-glutathionylation in malaria parasites.
    Kehr S; Jortzik E; Delahunty C; Yates JR; Rahlfs S; Becker K
    Antioxid Redox Signal; 2011 Dec; 15(11):2855-65. PubMed ID: 21595565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biphasic lindane-induced oxidation of glutathione and inhibition of gap junctions in myometrial cells.
    Caruso RL; Upham BL; Harris C; Trosko JE
    Toxicol Sci; 2005 Aug; 86(2):417-26. PubMed ID: 15901910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The different aspects of the biological role of glutathione].
    Bilska A; Kryczyk A; Włodek L
    Postepy Hig Med Dosw (Online); 2007 Jul; 61():438-53. PubMed ID: 17679914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein thiols and glutathione influence the nitric oxide-dependent regulation of the red blood cell metabolism.
    Galli F; Rossi R; Di Simplicio P; Floridi A; Canestrari F
    Nitric Oxide; 2002 Mar; 6(2):186-99. PubMed ID: 11890743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular redox potential and hemoglobin S-glutathionylation in human and rat erythrocytes: A comparative study.
    Colombo G; Dalle-Donne I; Giustarini D; Gagliano N; Portinaro N; Colombo R; Rossi R; Milzani A
    Blood Cells Mol Dis; 2010 Mar; 44(3):133-9. PubMed ID: 19963409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.