These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 2021081)

  • 21. Genomic footprinting of budding yeast replication origins during the cell cycle.
    Santocanale C; Diffley JF
    Methods Enzymol; 1997; 283():377-90. PubMed ID: 9251035
    [No Abstract]   [Full Text] [Related]  

  • 22. The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review.
    Gershon H; Gershon D
    Mech Ageing Dev; 2000 Dec; 120(1-3):1-22. PubMed ID: 11087900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current methods for Saccharomyces cerevisiae. II. Sporulation.
    Olempska-Beer Z
    Anal Biochem; 1987 Aug; 164(2):278-86. PubMed ID: 3314583
    [No Abstract]   [Full Text] [Related]  

  • 24. Defining drug targets in yeast haploinsufficiency screens: application to human translational pharmacology.
    Roberge M
    Sci Signal; 2008 Aug; 1(34):pt5. PubMed ID: 18728306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CEN14 sequences cause slower proliferation, reduced cell size and asporogeny in Saccharomyces cerevisiae.
    Dickinson JR; Wingfield JM; Mason DJ
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):877-9. PubMed ID: 7576555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Procedure for mutagenizing spores of Saccharomyces cerevisiae.
    Romano P; Soli MG; Suzzi G
    J Bacteriol; 1983 Nov; 156(2):907-8. PubMed ID: 6355067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression.
    Zettel MF; Garza LR; Cass AM; Myhre RA; Haizlip LA; Osadebe SN; Sudimack DW; Pathak R; Stone TL; Polymenis M
    FEMS Microbiol Lett; 2003 Jun; 223(2):253-8. PubMed ID: 12829295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micromanipulation and dissection of asci.
    Sherman F; Hicks J
    Methods Enzymol; 1991; 194():21-37. PubMed ID: 2005789
    [No Abstract]   [Full Text] [Related]  

  • 29. An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae.
    Jazwinski SM
    J Gerontol; 1990 May; 45(3):B68-74. PubMed ID: 2186084
    [No Abstract]   [Full Text] [Related]  

  • 30. Cell cycle regulation in yeasts and man: towards a unifying mechanism.
    Simanis V; Carr AM; Goss M; Lee MG; MacNeill SA; Nurse P
    Antonie Van Leeuwenhoek; 1987; 53(5):319-23. PubMed ID: 3318688
    [No Abstract]   [Full Text] [Related]  

  • 31. FAM64A is an androgen receptor-regulated feedback tumor promoter in prostate cancer.
    Zhou Y; Ou L; Xu J; Yuan H; Luo J; Shi B; Li X; Yang S; Wang Y
    Cell Death Dis; 2021 Jul; 12(7):668. PubMed ID: 34215720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions.
    Berthelet S; Usher J; Shulist K; Hamza A; Maltez N; Johnston A; Fong Y; Harris LJ; Baetz K
    Genetics; 2010 Jul; 185(3):1111-28. PubMed ID: 20439772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data.
    Liu X; Jessen WJ; Sivaganesan S; Aronow BJ; Medvedovic M
    BMC Bioinformatics; 2007 Aug; 8():283. PubMed ID: 17683565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons.
    Babu MM; Iyer LM; Balaji S; Aravind L
    Nucleic Acids Res; 2006; 34(22):6505-20. PubMed ID: 17130173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inferring transcriptional modules from ChIP-chip, motif and microarray data.
    Lemmens K; Dhollander T; De Bie T; Monsieurs P; Engelen K; Smets B; Winderickx J; De Moor B; Marchal K
    Genome Biol; 2006; 7(5):R37. PubMed ID: 16677396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A second iron-regulatory system in yeast independent of Aft1p.
    Rutherford JC; Jaron S; Ray E; Brown PO; Winge DR
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14322-7. PubMed ID: 11734641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation.
    Cvrcková F; Nasmyth K
    EMBO J; 1993 Dec; 12(13):5277-86. PubMed ID: 8262070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The GTS1 gene, which contains a Gly-Thr repeat, affects the timing of budding and cell size of the yeast Saccharomyces cerevisiae.
    Mitsui K; Yaguchi S; Tsurugi K
    Mol Cell Biol; 1994 Aug; 14(8):5569-78. PubMed ID: 8035831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae.
    Yamaguchi-Iwai Y; Dancis A; Klausner RD
    EMBO J; 1995 Mar; 14(6):1231-9. PubMed ID: 7720713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New nucleotide sequence data on the EMBL File Server.
    Nucleic Acids Res; 1991 Jun; 19(12):3467-82. PubMed ID: 2062670
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.